8,331 research outputs found

    Method and apparatus for relative navigation using reflected GPS signals

    Get PDF
    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target

    Probing the Galactic Potential with Next-Generation Observations of Disk Stars

    Full text link
    Near-future surveys promise a dramatic improvement in the number and precision of astrometric, photometric and spectroscopic measurements of stars in the Milky Way's disk. We examine the impact of such surveys on our understanding of the Galaxy by "observing" particle realizations of non-axisymmetric disk distributions orbiting in an axisymmetric halo with appropriate errors and then attempting to recover the underlying potential using a Markov Chain Monte Carlo (MCMC) approach. We demonstrate that the azimuthally averaged gravitational force field in the Galactic plane--and hence, to a lesser extent, the Galactic mass distribution--can be tightly constrained over a large range of radii using a variety of types of surveys so long as the error distribution of the measurements of the parallax, proper motion and radial velocity are well-understood and the disk is surveyed globally. One advantage of our method is that the target stars can be selected non-randomly in real or apparent-magnitude space to ensure just such a global sample without biasing the results. Assuming we can always measure the line-of-sight velocity of a star with at least 1 km/s precision, we demonstrate that the force field can be determined to better than ~1% for Galactocentric radii in the range R=4-20 kpc We conclude that near-future surveys, like SIM Lite, Gaia, and VERA, will provide the first precise mapping of the gravitational force field in the region of the Galactic disk.Comment: 41 pages and 10 figures, accepted for publication in Ap

    The DWARF project: Eclipsing binaries - precise clocks to discover exoplanets

    Full text link
    We present a new observational campaign, DWARF, aimed at detection of circumbinary extrasolar planets using the timing of the minima of low-mass eclipsing binaries. The observations will be performed within an extensive network of relatively small to medium-size telescopes with apertures of ~20-200 cm. The starting sample of the objects to be monitored contains (i) low-mass eclipsing binaries with M and K components, (ii) short-period binaries with sdB or sdO component, and (iii) post-common-envelope systems containing a WD, which enable to determine minima with high precision. Since the amplitude of the timing signal increases with the orbital period of an invisible third component, the timescale of project is long, at least 5-10 years. The paper gives simple formulas to estimate suitability of individual eclipsing binaries for the circumbinary planet detection. Intrinsic variability of the binaries (photospheric spots, flares, pulsation etc.) limiting the accuracy of the minima timing is also discussed. The manuscript also describes the best observing strategy and methods to detect cyclic timing variability in the minima times indicating presence of circumbinary planets. First test observation of the selected targets are presented.Comment: 12 pages, 2 figures, submitted to Astron. Nachrichte

    On the Completeness of Reflex Astrometry on Extrasolar Planets near the Sensitivity Limit

    Full text link
    We provide a preliminary estimate of the performance of reflex astrometry on Earth-like planets in the habitable zones of nearby stars. In Monte Carlo experiments, we analyze large samples of astrometric data sets with low to moderate signal-to-noise ratios. We treat the idealized case of a single planet orbiting a single star, and assume there are no non-Keplerian complications or uncertainties. The real case can only be more difficult. We use periodograms for discovery and least-squares fits for estimating the Keplerian parameters. We find a completeness for detection compatible with estimates in the literature. We find mass estimation by least squares to be biased, as has been found for noisy radial-velocity data sets; this bias degrades the completeness of accurate mass estimation. When we compare the true planetary position with the position predicted from the fitted orbital parameters, at future times, we find low completeness for an accuracy goal of 0.3 times the semimajor axis of the planet, even with no delay following the end of astrometric observations. Our findings suggest that the recommendation of the ExoPlanet Task Force (Lunine et al. 2008) for "the capability to measure convincingly wobble semi-amplitudes down to 0.2 μ\muas integrated over the mission lifetime," may not be satisfied by an instrument characterized by the noise floor of the Space Interferometry Mission, σfloor0.035μ\sigma_\mathrm{floor}\approx0.035\muas. An important, unsolved, strategic challenge for the exoplanetary science program is figuring out how to predict the future position of an Earth-like planet with accuracy sufficient to ensure the efficiency and success of the science operations for follow-on spectroscopy, which would search for biologically significant molecules in the atmosphere.Comment: v2: 16 pages, 4 figures; ApJ accepte
    corecore