904 research outputs found

    Mobility prediction for traffic offloading in cloud cooperated mmWave 5G networks

    Get PDF

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks

    Get PDF
    This paper investigates low-complexity approaches to small-cell base-station (SBS) design, suitable for future 5G millimeter-wave (mmWave) indoor deployments. Using large-scale antenna systems and high-bandwidth spectrum, such SBS can theoretically achieve the anticipated future data bandwidth demand of 10000 fold in the next 20 years. We look to exploit small cell distances to simplify SBS design, particularly considering dense indoor installations. We compare theoretical results, based on a link budget analysis, with the system simulation of a densely deployed indoor network using appropriate mmWave channel propagation conditions. The frequency diverse bands of 28 and 72 GHz of the mmWave spectrum are assumed in the analysis. We investigate the performance of low-complexity approaches using a minimal number of antennas at the base station and the user equipment. Using the appropriate power consumption models and the state-of-the-art sub-component power usage, we determine the total power consumption and the energy efficiency of such systems. With mmWave being typified nonline-of-sight communication, we further investigate and propose the use of direct sequence spread spectrum as a means to overcome this, and discuss the use of multipath detection and combining as a suitable mechanism to maximize link reliability

    Enhanced Mobile Networking using Multi-connectivity and Packet Duplication in Next-Generation Cellular Networks

    Get PDF
    Modern cellular communication systems need to handle an enormous number of users and large amounts of data, including both users as well as system-oriented data. 5G is the fifth-generation mobile network and a new global wireless standard that follows 4G/LTE networks. The uptake of 5G is expected to be faster than any previous cellular generation, with high expectations of its future impact on the global economy. The next-generation 5G networks are designed to be flexible enough to adapt to modern use cases and be highly modular such that operators would have the flexibility to provide selective features based on user demand that could be implemented without investment in additional infrastructure. Thus, the underlying cellular network that is capable of delivering these expectations must be able to handle high data rates with low latency and ultra-reliability to fulfill these growing needs. Communication in the sub-6 GHz range cannot provide high throughputs due to the scarcity of spectrum in these bands. Using frequencies in FR2 or millimeter wave (mmWave) range for communication can provide large data rates and cover densely populated areas, but only over short distances as they are susceptible to blockages. This is why dense deployments of mmWave base stations are being considered to achieve very high data rates. But, such architectures lack the reliability needed to support many V2X applications, especially under mobility scenarios. As we have discussed earlier, 5G and beyond 5G networks must also account for UE\u27s mobility as they are expected to maintain their level of performance under different mobility scenarios and perform better than traditional networks. Although 5G technology has developed significantly in recent years, there still exists a critical gap in understanding how all these technologies would perform under mobility. There is a need to analyze and identify issues that arise with mobility and come up with solutions to overcome these hurdles without compromising the performance of these networks. Multi-connectivity (MC) refers to simultaneous connectivity with multiple radio access technologies or bands and potentially represents an important solution for the ongoing 5G deployments towards improving their performance. To address the network issues that come with mobility and fill that gap, this dissertation investigates the impact of multi-connectivity on next-generation networks from three distinct perspectives, 1) mobility enhancement using multi-connectivity in 5G networks, 2) improving reliability in mobility scenarios using multi-Connectivity with packet duplication, and 3) single grant multiple uplink scheme for performance improvement in mobility scenarios. The traditional macro-cell architecture of cellular networks that cover large geographical areas will struggle to deliver the dense coverage, low latency, and high bandwidth required by some 5G applications. Thus, 5G networks must utilize ultra-dense deployment of access points operating at higher mmWave frequency bands. But, for such dense networks, user mobility could be particularly challenging as it would reduce network efficiency and user-perceived service quality due to frequent handoffs. Multi-connectivity is seen as a key enabler in improving the performance of these next-generation networks. It enhances the system performance by providing multiple simultaneous links between the user equipment (UE) and the base stations (BS) for data transfer. Also, it eliminates the time needed to deal with frequent handoffs, link establishment, etc. Balancing the trade-offs among handoff rate, service delay, and achievable coverage/data rate in heterogeneous, dense, and diverse 5G cellular networks is, therefore, an open challenge. Hence, in this dissertation, we analyze how mobility impacts the performance of current Ultra-dense mmWave network (UDN) architecture in a city environment and discuss improvements for reducing the impact of mobility to meet 5G specifications using multi-connectivity. Current handover protocols, by design, suffer from interruption even if they are successful and, at the same time, carry the risk of failures during execution. The next-generation wireless networks, like 5G New Radio, introduce even stricter requirements that cannot be fulfilled with the traditional hard handover concept. Another expectation from these services is extreme reliability that will not tolerate any mobility-related failures. Thus, in this dissertation, we explore a novel technique using packet duplication and evaluate its performance under various mobility scenarios. We study how packet duplication can be used to meet the stringent reliability and latency requirements of modern cellular networks as data packets are duplicated and transmitted concurrently over two independent links. The idea is to generate multiple instances (duplicates) of a packet and transmit them simultaneously over different uncorrelated channels with the aim of reducing the packet failure probability. We also propose enhancements to the packet duplication feature to improve radio resource utilization. The wide variety of use cases in the 5G greatly differs from the use cases considered during the design of third-generation (3G) and fourth-generation (4G) long-term evolution (LTE) networks. Applications like autonomous driving, IoT applications, live video, etc., are much more uplink intensive as compared to traditional applications. However, the uplink performance is often, by design, lower than the downlink; hence, 5G must improve uplink performance. Hence, to meet the expected performance levels, there is a need to explore flexible network architectures for 5G networks. In this work, we propose a novel uplink scheme where the UE performs only a single transmission on a common channel, and every base station that can receive this signal would accept and process it. In our proposed architecture, a UE is connected to multiple mmWave capable distributed units (DUs), which are connected to a single gNB-central unit. In an ultra-dense deployment with multiple mmWave base stations around the UE, this removes the need to perform frequent handovers and allows high mobility with reduced latency. We develop and evaluate the performance of such a system for high throughput and reliable low latency communication under various mobility scenarios. To study the impact of mobility on next-generation networks, this work develops and systematically analyzes the performance of the 5G networks under mobility. We also look into the effect of increasing the number of users being served on the network. As a result, these studies are intended to understand better the network requirements for handling mobility and network load with multi-connectivity. This dissertation aims to achieve clarity and also proposes solutions for resolving these real-world network mobility issues

    A Comprehensive Survey on Moving Networks

    Get PDF
    The unprecedented increase in the demand for mobile data, fuelled by new emerging applications such as HD video streaming and heightened online activities has caused massive strain on the existing cellular networks. As a solution, the 5G technology has been introduced to improve network performance through various innovative features such as mmWave spectrum and HetNets. In essence, HetNets include several small cells underlaid within macro-cell to serve densely populated regions. Recently, a mobile layer of HetNet has been under consideration by the researchers and is often referred to as moving networks. Moving networks comprise of mobile cells that are primarily introduced to improve QoS for commuting users inside public transport because the QoS is deteriorated due to vehicular penetration losses. Furthermore, the users inside fast moving public transport also exert excessive load on the core network due to large group handovers. To this end, mobile cells will play a crucial role in reducing overall handover count and will help in alleviating these problems by decoupling in-vehicle users from the core network. To date, remarkable research results have been achieved by the research community in addressing challenges linked to moving networks. However, to the best of our knowledge, a discussion on moving networks in a holistic way is missing in the current literature. To fill the gap, in this paper, we comprehensively survey moving networks. We cover the technological aspects and their applications in the futuristic applications. We also discuss the use-cases and value additions that moving networks may bring to future cellular architecture and identify the challenges associated with them. Based on the identified challenges we discuss the future research directions.Comment: This survey has been submitted to IEEE Communications Surveys & Tutorial

    Spectral Efficiency of MIMO Millimeter-Wave Links with Single-Carrier Modulation for 5G Networks

    Full text link
    Future wireless networks will extensively rely upon bandwidths centered on carrier frequencies larger than 10GHz. Indeed, recent research has shown that, despite the large path-loss, millimeter wave (mmWave) frequencies can be successfully exploited to transmit very large data-rates over short distances to slowly moving users. Due to hardware complexity and cost constraints, single-carrier modulation schemes, as opposed to the popular multi-carrier schemes, are being considered for use at mmWave frequencies. This paper presents preliminary studies on the achievable spectral efficiency on a wireless MIMO link operating at mmWave in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e. a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver. Our results show that the former achieves a larger spectral efficiency than the latter. Results also confirm that the spectral efficiency increases with the dimension of the antenna array, as well as that performance gets severely degraded when the link length exceeds 100 meters and the transmit power falls below 0dBW. Nonetheless, mmWave appear to be very suited for providing very large data-rates over short distances.Comment: 8 pages, 8 figures, to appear in Proc. 20th International ITG Workshop on Smart Antennas (WSA2016
    • …
    corecore