229 research outputs found

    We know what you want to buy:a demographic-based system for product recommendation on microblogs

    Get PDF
    Product recommender systems are often deployed by e-commerce websites to improve user experience and increase sales. However, recommendation is limited by the product information hosted in those e-commerce sites and is only triggered when users are performing e-commerce activities. In this paper, we develop a novel product recommender system called METIS, a MErchanT Intelligence recommender System, which detects users' purchase intents from their microblogs in near real-time and makes product recommendation based on matching the users' demographic information extracted from their public profiles with product demographics learned from microblogs and online reviews. METIS distinguishes itself from traditional product recommender systems in the following aspects: 1) METIS was developed based on a microblogging service platform. As such, it is not limited by the information available in any specific e-commerce website. In addition, METIS is able to track users' purchase intents in near real-time and make recommendations accordingly. 2) In METIS, product recommendation is framed as a learning to rank problem. Users' characteristics extracted from their public profiles in microblogs and products' demographics learned from both online product reviews and microblogs are fed into learning to rank algorithms for product recommendation. We have evaluated our system in a large dataset crawled from Sina Weibo. The experimental results have verified the feasibility and effectiveness of our system. We have also made a demo version of our system publicly available and have implemented a live system which allows registered users to receive recommendations in real time

    A Random Walk Model for Item Recommendation in Social Tagging Systems

    Get PDF
    Social tagging, as a novel approach to information organization and discovery, has been widely adopted in many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items provide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity of the ternary interaction data among users, items, and tags limits the performance of tag-based recommendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by applying random walks on ternary interaction graphs to explore transitive associations between users and items. The transitive associations in this article refer to the path of the link between any two nodes whose length is greater than one. Taking advantage of these transitive associations can allow more accurate measurement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like algorithm has been developed to explore these transitive associations by spreading users\u27 preferences on an item similarity graph and spreading items\u27 influences on a user similarity graph. Empirical evaluation on three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and improve the quality of item recommendation

    Tourist experiences recommender system based on emotion recognition with wearable data

    Get PDF
    The collection of physiological data from people has been facilitated due to the mass use of cheap wearable devices. Although the accuracy is low compared to specialized healthcare devices, these can be widely applied in other contexts. This study proposes the architecture for a tourist experiences recommender system (TERS) based on the user’s emotional states who wear these devices. The issue lies in detecting emotion from Heart Rate (HR) measurements obtained from these wearables. Unlike most state-of-the-art studies, which have elicited emotions in controlled experiments and with high-accuracy sensors, this research’s challenge consisted of emotion recognition (ER) in the daily life context of users based on the gathering of HR data. Furthermore, an objective was to generate the tourist recommendation considering the emotional state of the device wearer. The method used comprises three main phases: The first was the collection of HR measurements and labeling emotions through mobile applications. The second was emotional detection using deep learning algorithms. The final phase was the design and validation of the TERS-ER. In this way, a dataset of HR measurements labeled with emotions was obtained as results. Among the different algorithms tested for ER, the hybrid model of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks had promising results. Moreover, concerning TERS, Collaborative Filtering (CF) using CNN showed better performance.This research was financially supported by the Ministry of Science, Technology, and Innovation of Colombia (733-2015) and by the Universidad Santo Tomás Seccional Tunja. We thank the members of the GICAC group (Research Group in Administrative and Accounting Sciences) of the Universidad Santo Tomás Seccional Tunja for their participation in the experimental phase of this investigation

    Tensor Learning for Recovering Missing Information: Algorithms and Applications on Social Media

    Get PDF
    Real-time social systems like Facebook, Twitter, and Snapchat have been growing rapidly, producing exabytes of data in different views or aspects. Coupled with more and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valuable information regarding “who”, “where”, “when” and “what”, these real-time human sensor data promise new research opportunities to uncover models of user behavior, mobility, and information sharing. These real-time dynamics in social systems usually come in multiple aspects, which are able to help better understand the social interactions of the underlying network. However, these multi-aspect datasets are often raw and incomplete owing to various unpredictable or unavoidable reasons; for instance, API limitations and data sampling policies can lead to an incomplete (and often biased) perspective on these multi-aspect datasets. This missing data could raise serious concerns such as biased estimations on structural properties of the network and properties of information cascades in social networks. In order to recover missing values or information in social systems, we identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption of rich side information that is able to describe the similarities of entities, generation of robust models rather than limiting them on specific applications, and scalability of models to handle real large-scale datasets (billions of observed entries). With these challenges in mind, this dissertation aims to develop scalable and interpretable tensor-based frameworks, algorithms and methods for recovering missing information on social media. In particular, this dissertation research makes four unique contributions: _ The first research contribution of this dissertation research is to propose a scalable framework based on low-rank tensor learning in the presence of incomplete information. Concretely, we formally define the problem of recovering the spatio-temporal dynamics of online memes and tackle this problem by proposing a novel tensor-based factorization approach based on the alternative direction method of multipliers (ADMM) with the integration of the latent relationships derived from contextual information among locations, memes, and times. _ The second research contribution of this dissertation research is to evaluate the generalization of the proposed tensor learning framework and extend it to the recommendation problem. In particular, we develop a novel tensor-based approach to solve the personalized expert recommendation by integrating both the latent relationships between homogeneous entities (e.g., users and users, experts and experts) and the relationships between heterogeneous entities (e.g., users and experts, topics and experts) from the geo-spatial, topical, and social contexts. _ The third research contribution of this dissertation research is to extend the proposed tensor learning framework to the user topical profiling problem. Specifically, we propose a tensor-based contextual regularization model embedded into a matrix factorization framework, which leverages the social, textual, and behavioral contexts across users, in order to overcome identified challenges. _ The fourth research contribution of this dissertation research is to scale up the proposed tensor learning framework to be capable of handling real large-scale datasets that are too big to fit in the main memory of a single machine. Particularly, we propose a novel distributed tensor completion algorithm with the trace-based regularization of the auxiliary information based on ADMM under the proposed tensor learning framework, which is designed to scale up to real large-scale tensors (e.g., billions of entries) by efficiently computing auxiliary variables, minimizing intermediate data, and reducing the workload of updating new tensors
    • …
    corecore