5,725 research outputs found

    Effect of Lowest Instrumented Vertebra on Trunk Mobility in Patients With Adolescent Idiopathic Scoliosis Undergoing a Posterior Spinal Fusion

    Get PDF
    Study Design Prospective. Objectives The goal of this study was to evaluate the effect of posterior spinal fusion surgery terminating at different lowest instrumented vertebrae (LIV) on trunk mobility in individuals with adolescent idiopathic scoliosis (AIS). Summary of Background Data Posterior spinal fusion with instrumentation is the standard surgical technique employed in AIS for correcting spine deformities with Cobb angles exceeding 50°. Surgical correction of curve deformity reduces trunk mobility and range of motion. However, conflicting findings from previous studies investigating the impact of different LIV levels on the reduction in trunk mobility after surgery have been reported. Methods The study was designed as a prospective study with 47 patients (7 males and 40 females) with AIS who underwent posterior spinal fusion. Patients were classified into 5 groups based on their surgical LIV level (ie, T12, L1, L2, L3, and L4). Trunk flexion-extension (sagittal plane), lateral bending (coronal plane), and axial rotation (transverse plane) kinematics were assessed during preoperative, 1 year postoperative, and 2 years postoperative evaluation visits. Results There were postoperative reductions of 41%, 51%, and 59% in trunk range of motion in the sagittal, coronal, and transverse planes, respectively (p \u3c .0001). A trend toward greater postoperative reductions in peak forward flexion at more distal LIVs was observed (p = .04). Conclusions Fusion reduces trunk mobility in the sagittal, coronal, and transverse planes. More distal LIV fusions limit peak forward flexion to a greater extent which is considered clinically significant. After fusion, the reductions seen in axial rotation, lateral bending, and backward extension do not differ significantly at more distal LIVs

    Effect of Surgical Fusion on Volitional Weight-Shifting in Individuals With Adolescent Idiopathic Scoliosis

    Get PDF
    Study Design Prospective. Objectives The goals of this study were to (1) evaluate the differences in weightbearing symmetry between individuals with adolescent idiopathic scoliosis (AIS) and typically developing controls; (2) observe the effect of posterior spinal fusion and instrumentation (PSFI) on volitional weight-shifting at 1 and 2 years postoperatively; and (3) evaluate whether lowest instrumented fusion level (ie, lowest instrumented vertebra [LIV]) in PSFI has an effect on volitional weight-shifting. Summary of Background Data Previous studies have conflicting findings with regard to the effect of scoliosis on postural control tasks as well as the effect of surgery. They have also noted an inconsistent effect of PSFI at different LIVs, with more distal LIVs exhibiting greater reductions in postoperative range of motion. Methods The study was designed with an AIS group of 41 patients (8 males and 33 females) with AIS who underwent PSFI, along with a Control Group of 24 age-matched typically developing participants (12 male and 12 female). Both groups performed postural control tasks (static balance and volitional weight-shifting), with the AIS group repeating the tasks at 1 and 2 years postoperatively. Results At baseline, the AIS group showed increased weightbearing asymmetry than the Control Group (p = .01). The AIS group showed improvements in volitional weight-shifting at 2 years over baseline (p \u3c .01). There was no effect of LIV on volitional weight-shifting by the second postoperative year. Conclusions Individuals with AIS have greater weightbearing asymmetry but improved volitional weight-shifting over typically developing controls. PSFI improves volitional weight-shifting beyond preoperative baseline but does not differ significantly by LIV

    Effect of Surgical Fusion on Volitional Weight-Shifting in Individuals With Adolescent Idiopathic Scoliosis

    Get PDF
    Study Design Prospective. Objectives The goals of this study were to (1) evaluate the differences in weightbearing symmetry between individuals with adolescent idiopathic scoliosis (AIS) and typically developing controls; (2) observe the effect of posterior spinal fusion and instrumentation (PSFI) on volitional weight-shifting at 1 and 2 years postoperatively; and (3) evaluate whether lowest instrumented fusion level (ie, lowest instrumented vertebra [LIV]) in PSFI has an effect on volitional weight-shifting. Summary of Background Data Previous studies have conflicting findings with regard to the effect of scoliosis on postural control tasks as well as the effect of surgery. They have also noted an inconsistent effect of PSFI at different LIVs, with more distal LIVs exhibiting greater reductions in postoperative range of motion. Methods The study was designed with an AIS group of 41 patients (8 males and 33 females) with AIS who underwent PSFI, along with a Control Group of 24 age-matched typically developing participants (12 male and 12 female). Both groups performed postural control tasks (static balance and volitional weight-shifting), with the AIS group repeating the tasks at 1 and 2 years postoperatively. Results At baseline, the AIS group showed increased weightbearing asymmetry than the Control Group (p = .01). The AIS group showed improvements in volitional weight-shifting at 2 years over baseline (p \u3c .01). There was no effect of LIV on volitional weight-shifting by the second postoperative year. Conclusions Individuals with AIS have greater weightbearing asymmetry but improved volitional weight-shifting over typically developing controls. PSFI improves volitional weight-shifting beyond preoperative baseline but does not differ significantly by LIV

    Lumbar Spine Location in Fluoroscopic Images by Evidence Gathering

    No full text
    Low back pain (LBP) is a very common problem and lumbar segmental instability is one of the causes. It is important to investigate lumbar spine movement in order to understand instability better and as an aid to diagnosis. Digital videofluoroscopy provides a method of quantifying the motion of individual vertebrae, but due to the relatively poor image quality, it is difficult and time consuming to locate landmarks manually, from which the kinematics can be calculated. Some semi-automatic approaches have already been developed but these are still time consuming and require some manual interaction. In this paper we apply the Hough transform (HT) to locate the lumbar spinal segments automatically. The HT is a powerful tool in computer vision and it has good performance in noise and partial occlusion. A recent arbitrary shape representation avoids problems inherent with tabular representations in the generalised HT (GHT) by describing shapes using a continuous formulation. The target shape is described by a set of Fourier descriptors, which vote in an accumulator space from which the object parameters of translation (including the x and y direction), rotation and scale can be determined. At present, this algorithm has been applied to the images of lumbar spine, and has been shown to provide satisfactory results. Further work will concentrate on reducing the computational time for real-time application, and on approaches to refine information at the apices, given initialisation by the new HT method

    Automatic Lumbar Vertebrae Segmentation in Fluoroscopic Images via Optimised Concurrent Hough Transform

    No full text
    Low back pain is a very common problem in the industrialised countries and its associated cost is enormous. Diagnosis of the underlying causes can be extremely difficult. Many studies have focused on mechanical disorders of the spine. Digital videofluoroscopy (DVF) was widely used to obtain images for motion studies. This can provide motion sequences of the lumbar spine, but the images obtained often suffer due to noise, exacerbated by the very low radiation dosage. Thus determining vertebrae position within the image sequence presents a considerable challenge. In this paper, we show how our new approach can automatically detect the positions and borders of vertebrae concurrently, relieving many of the problems experienced in other approaches. First, we use phase congruency to relieve difficulty associated with threshold selection in edge detection of the illumination variant DVF images. Then, our new Hough transform approach is applied to determine the moving vertebrae, concurrently. We include optimisation via a genetic algorithm as without it the extraction of moving multiple vertebrae is computationally daunting. Our results show that this new approach can indeed provide extractions of position and rotation which appear to be of sufficient quality to aid therapy and diagnosis of spinal disorders
    • …
    corecore