5 research outputs found

    Motion sequence analysis in the presence of figural cues

    Full text link
    Published in final edited form as: Neurocomputing. 2015 January 5, 147: 485–491The perception of 3-D structure in dynamic sequences is believed to be subserved primarily through the use of motion cues. However, real-world sequences contain many figural shape cues besides the dynamic ones. We hypothesize that if figural cues are perceptually significant during sequence analysis, then inconsistencies in these cues over time would lead to percepts of non-rigidity in sequences showing physically rigid objects in motion. We develop an experimental paradigm to test this hypothesis and present results with two patients with impairments in motion perception due to focal neurological damage, as well as two control subjects. Consistent with our hypothesis, the data suggest that figural cues strongly influence the perception of structure in motion sequences, even to the extent of inducing non-rigid percepts in sequences where motion information alone would yield rigid structures. Beyond helping to probe the issue of shape perception, our experimental paradigm might also serve as a possible perceptual assessment tool in a clinical setting.The authors wish to thank all observers who participated in the experiments reported here. This research and the preparation of this manuscript was supported by the National Institutes of Health RO1 NS064100 grant to LMV. (RO1 NS064100 - National Institutes of Health)Accepted manuscrip

    Leg vein pressure pulser (LVPP): a mechatronic device for spinal cord injured patient standing in for the ineffectiveness of paralyzed leg muscles to pump blood from leg veins towards heart

    Get PDF
    Paraplegic subject often experience an impairment of the cardiovascular function. One of the most important factors in the occurrence of this situation is the drastic reduction in venous return from the muscle at rest, due to the absence of the function of muscle pump that is present in the able-bodied subjects. It is reasonable to assume that an external mechanical force applied on the lower limbs of paraplegic subjects might produce a positive effect on cardiovascular condition. Accordingly, the research aimed to identify and develop a robotic device to restore the cardiovascular function in paraplegics. To test this hypothesis we performed two experimental studies involving healthy subjects where two automatic robotic able to apply an ascendant external pressure to lower limbs were tested. Hemodynamic response was monitored beat-by-beat by means of impedance cardiography and Doppler ultrasound was used to measure cardiac volumes. Results show that the application of robotic mechanical actuators pneumatic is able to generate cycles of compression and decompression on venous structures of the lower limbs similar to what normally happens in the skeletal muscle when subjects are walking. Especially when actuators simulated muscle pattern activation similar to mechanism of walking we were able to further increase cardiac output and end diastolic volume. In conclusion our preliminary finding suggest that is possible to compensate partially the lack of venous return in spinal cord injury population thus increasing the quality of life, reducing the risk of cardiovascular disease and then extend their life expectancy

    Soft pneumatic devices for blood circulation improvement

    Get PDF
    The research activity I am presenting in this thesis lies within the framework of a cooperation between the University of Cagliari (Applied Mechanics and Robotics lab, headed by professor Andrea Manuello Bertetto, and the research group of physicians referencing to professor Alberto Concu at the Laboratory of Sports Physiology, Department of Medical Sciences), and the Polytechnic of Turin (professor Carlo Ferraresi and his equipe at the Group of Automation and Robotics, Department of Mechanical and Aerospace Engineering) This research was also funded by the Italian Ministry of Research (MIUR – PRIN 2009). My activity has been mainly carried on at the Department of Mechanics, Robotics lab under the supervision of prof. Manuello; I have also spent one year at the Control Lab of the School of Electrical Engineering at Aalto University (Helsinki, Finland). The tests on the patients were taken at the Laboratory of Sports Physiology, Cagliari. I will be describing the design, development and testing of some soft pneumatic flexible devices meant to apply an intermittent massage and to restore blood circulation in lower limbs in order to improve cardiac output and wellness in general. The choice of the actuators, as well as the pneumatic circuits and air distribution system and PLC control patterns will be outlined. The trial run of the devices have been field--‐tested as soon a prototype was ready, so as to tune its features step--‐by--‐ step. I am also giving a characterization of a commercial thin force sensor after briefly reviewing some other type of thin pressure transducer. It has been used to gauge the contact pressure between the actuator and the subject’s skin in order to correlate the level of discomfort to the supply pressure, and to feed this value back to regulate the supply air flow. In order for the massage to be still effective without causing pain or distress or any cutoff to the blood flow, some control objective have been set, consisting in the regulation of the contact force so that it comes to the constant set point smoothly and its value holds constant until unloading occurs. The targets of such mechatronic devices range from paraplegic patients lacking of muscle tone because of their spinal cord damage, to elite endurance athletes needing a circulation booster when resting from practicing after serious injuries leading to bed rest. Encouraging results have been attained for both these two categories, based on the monitored hemodynamic variables
    corecore