2 research outputs found

    Creative design and modelling of large-range translation compliant parallel manipulators

    Get PDF
    Compliant parallel mechanisms/manipulators (CPMs) are parallel manipulators that transmit motion/load by deformation of their compliant members. Due to their merits such as the eliminated backlash and friction, no need for lubrication, reduced wear and noise, and monolithic configuration, they have been used in many emerging applications as scanning tables, bio-cell injectors, nano-positioners, and etc. How to design large-range CPMs is still a challenging issue. To meet the needs for large-range translational CPMs for high-precision motion stages, this thesis focuses on the systematic conceptual design and modelling of large-range translational CPMs with distributed-compliance. Firstly, several compliant parallel modules with distributed-compliance, such as spatial multi-beam modules, are identified as building blocks of translational CPMs. A normalized, nonlinear and analytical model is then derived for the spatial multi-beam modules to address the non-linearity of load-equilibrium equations. Secondly, a new design methodology for translational CPMs is presented. The main characteristic of the proposed design approach is not only to replace kinematic joints as in the literature, but also to replace kinematic chains with appropriate multiple degrees-of-freedom (DOF) compliant parallel modules. Thirdly, novel large-range translational CPMs are constructed using the proposed design methodology and identified compliant parallel modules. The proposed novel CPMs include, for example, a 1-DOF compliant parallel gripper with auto-adaptive grasping function, a stiffness-enhanced XY CPM with a spatial compliant leg, and an improved modular XYZ CPM using identical spatial double four-beam modules. Especially, the proposed XY CPM and XYZ CPM can achieve a 10mm’s motion range along each axis in the case studies. Finally, kinematostatic modelling of the proposed translational CPMs is presented to enable rapid performance characteristic analysis. The proposed analytical models are also compared with finite element analysis

    Motion stages for electronic packaging design and control

    No full text
    corecore