854 research outputs found

    Motion Compensated Self Supervised Deep Learning for Highly Accelerated 3D Ultrashort Echo Time Pulmonary MRI

    Full text link
    Purpose: To investigate motion compensated, self-supervised, model based deep learning (MBDL) as a method to reconstruct free breathing, 3D Pulmonary ultrashort echo time (UTE) acquisitions. Theory and Methods: A self-supervised eXtra Dimension MBDL architecture (XD-MBDL) was developed that combined respiratory states to reconstruct a single high-quality 3D image. Non-rigid, GPU based motion fields were incorporated into this architecture by estimating motion fields from a low resolution motion resolved (XD-GRASP) iterative reconstruction. Motion Compensated XD-MBDL was evaluated on lung UTE datasets with and without contrast and was compared to constrained reconstructions and variants of self-supervised MBDL that do not consider respiratory motion. Results: Images reconstructed using XD-MBDL demonstrate improved image quality as measured by apparent SNR, CNR and visual assessment relative to self-supervised MBDL approaches that do not account for dynamic respiratory states, XD-GRASP and a recently proposed motion compensated iterative reconstruction strategy (iMoCo). Additionally, XD-MBDL reduced reconstruction time relative to both XD-GRASP and iMoCo. Conclusion: A method was developed to allow self-supervised MBDL to combine multiple respiratory states to reconstruct a single image. This method was combined with GPU-based image registration to further improve reconstruction quality. This approach showed promising results reconstructing a user-selected respiratory phase from free breathing 3D pulmonary UTE acquisitions

    Deep learning for accelerated magnetic resonance imaging

    Get PDF
    Medical imaging has aided the biggest advance in the medical domain in the last century. Whilst X-ray, CT, PET and ultrasound are a form of imaging that can be useful in particular scenarios, they each have disadvantages in cost, image quality, ease-of-use and ionising radiation. MRI is a slow imaging protocol which contributes to its high cost to run. However, MRI is a very versatile imaging protocol allowing images of varying contrast to be easily generated whilst not requiring the use of ionising radiation. If MRI can be made to be more efficient and smart, the effective cost of running MRI may be more affordable and accessible. The focus of this thesis is decreasing the acquisition time involved in MRI whilst maintaining the quality of the generated images and thus diagnosis. In particular, we focus on data-driven deep learning approaches that aid in the image reconstruction process and streamline the diagnostic process. We focus on three particular aspects of MR acquisition. Firstly, we investigate the use of motion estimation in the cine reconstruction process. Motion allows us to combine an abundance of imaging data in a learnt reconstruction model allowing acquisitions to be sped up by up to 50 times in extreme scenarios. Secondly, we investigate the possibility of using under-acquired MR data to generate smart diagnoses in the form of automated text reports. In particular, we investigate the possibility of skipping the imaging reconstruction phase altogether at inference time and instead, directly seek to generate radiological text reports for diffusion-weighted brain images in an effort to streamline the diagnostic process. Finally, we investigate the use of probabilistic modelling for MRI reconstruction without the use of fully-acquired data. In particular, we note that acquiring fully-acquired reference images in MRI can be difficult and nonetheless may still contain undesired artefacts that lead to degradation of the dataset and thus the training process. In this chapter, we investigate the possibility of performing reconstruction without fully-acquired references and furthermore discuss the possibility of generating higher quality outputs than that of the fully-acquired references.Open Acces

    Non-rigid 3D motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank MR-MOTUS

    Get PDF
    With the recent introduction of the MR-LINAC, an MR-scanner combined with a radiotherapy LINAC, MR-based motion estimation has become of increasing interest to (retrospectively) characterize tumor and organs-at-risk motion during radiotherapy. To this extent, we introduce low-rank MR-MOTUS, a framework to retrospectively reconstruct time-resolved non-rigid 3D+t motion-fields from a single low-resolution reference image and prospectively undersampled k-space data acquired during motion. Low-rank MR-MOTUS exploits spatio-temporal correlations in internal body motion with a low-rank motion model, and inverts a signal model that relates motion-fields directly to a reference image and k-space data. The low-rank model reduces the degrees-of-freedom, memory consumption and reconstruction times by assuming a factorization of space-time motion-fields in spatial and temporal components. Low-rank MR-MOTUS was employed to estimate motion in 2D/3D abdominothoracic scans and 3D head scans. Data were acquired using golden-ratio radial readouts. Reconstructed 2D and 3D respiratory motion-fields were respectively validated against time-resolved and respiratory-resolved image reconstructions, and the head motion against static image reconstructions from fully-sampled data acquired right before and right after the motion. Results show that 2D+t respiratory motion can be estimated retrospectively at 40.8 motion-fields-per-second, 3D+t respiratory motion at 7.6 motion-fields-per-second and 3D+t head-neck motion at 9.3 motion-fields-per-second. The validations show good consistency with image reconstructions. The proposed framework can estimate time-resolved non-rigid 3D motion-fields, which allows to characterize drifts and intra and inter-cycle patterns in breathing motion during radiotherapy, and could form the basis for real-time MR-guided radiotherapy.Comment: 18 pages main text, 8 main figures, 1 main table, 12 supporting videos, 2 supporting figures, 1 supporting information PDF. Submitted to Magnetic Resonance in Medicine as Full Pape

    Knowledge-driven deep learning for fast MR imaging: undersampled MR image reconstruction from supervised to un-supervised learning

    Full text link
    Deep learning (DL) has emerged as a leading approach in accelerating MR imaging. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MR imaging involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MR imaging along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.Comment: 46 pages, 5figures, 1 tabl

    PEAR: PEriodic And fixed Rank separation for fast fMRI

    Full text link
    In functional MRI (fMRI), faster acquisition via undersampling of data can improve the spatial-temporal resolution trade-off and increase statistical robustness through increased degrees-of-freedom. High quality reconstruction of fMRI data from undersampled measurements requires proper modeling of the data. We present an fMRI reconstruction approach based on modeling the fMRI signal as a sum of periodic and fixed rank components, for improved reconstruction from undersampled measurements. We decompose the fMRI signal into a component which a has fixed rank and a component consisting of a sum of periodic signals which is sparse in the temporal Fourier domain. Data reconstruction is performed by solving a constrained problem that enforces a fixed, moderate rank on one of the components, and a limited number of temporal frequencies on the other. Our approach is coined PEAR - PEriodic And fixed Rank separation for fast fMRI. Experimental results include purely synthetic simulation, a simulation with real timecourses and retrospective undersampling of a real fMRI dataset. Evaluation was performed both quantitatively and visually versus ground truth, comparing PEAR to two additional recent methods for fMRI reconstruction from undersampled measurements. Results demonstrate PEAR's improvement in estimating the timecourses and activation maps versus the methods compared against at acceleration ratios of R=8,16 (for simulated data) and R=6.66,10 (for real data). PEAR results in reconstruction with higher fidelity than when using a fixed-rank based model or a conventional Low-rank+Sparse algorithm. We have shown that splitting the functional information between the components leads to better modeling of fMRI, over state-of-the-art methods
    • …
    corecore