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Abstract

Medical imaging has aided the biggest advance in the medical domain in the last century. Whilst

X-ray, CT, PET and ultrasound are a form of imaging that can be useful in particular scenarios,

they each have disadvantages in cost, image quality, ease-of-use and ionising radiation. MRI

is a slow imaging protocol which contributes to its high cost to run. However, MRI is a very

versatile imaging protocol allowing images of varying contrast to be easily generated whilst not

requiring the use of ionising radiation. If MRI can be made to be more efficient and smart, the

effective cost of running MRI may be more affordable and accessible. The focus of this thesis is

decreasing the acquisition time involved in MRI whilst maintaining the quality of the generated

images and thus diagnosis. In particular, we focus on data-driven deep learning approaches

that aid in the image reconstruction process and streamline the diagnostic process. We focus on

three particular aspects of MR acquisition. Firstly, we investigate the use of motion estimation

in the cine reconstruction process. Motion allows us to combine an abundance of imaging

data in a learnt reconstruction model allowing acquisitions to be sped up by up to 50 times in

extreme scenarios. Secondly, we investigate the possibility of using under-acquired MR data to

generate smart diagnoses in the form of automated text reports. In particular, we investigate

the possibility of skipping the imaging reconstruction phase altogether at inference time and

instead, directly seek to generate radiological text reports for diffusion-weighted brain images

in an effort to streamline the diagnostic process. Finally, we investigate the use of probabilistic

modelling for MRI reconstruction without the use of fully-acquired data. In particular, we note

that acquiring fully-acquired reference images in MRI can be difficult and nonetheless may

still contain undesired artefacts that lead to degradation of the dataset and thus the training

process. In this chapter, we investigate the possibility of performing reconstruction without

fully-acquired references and furthermore discuss the possibility of generating higher quality

outputs than that of the fully-acquired references.
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Chapter 1

Introduction

The world of medical imaging has seen recent upturn with the advent of tractable, scalable

deep learning. Medical imaging is arguably one of the biggest achievements in recent human

history. In the developed world, X-ray, ultrasound, magnetic resonance imaging (MRI), com-

puted tomography (CT) and positron-emitted tomography (PET) are all commonplace. In

the developing world, these technologies are slowly being introduced albeit in lower quantities

and quality. Imaging is one of the most useful tools in diagnostics, particularly since they are

non-invasive and in the case of non-radiation based imaging, harmless. However, the demand

for diagnostics that require the use of such tools has seen a remarkable increase. In fact, the

increase far outweighs the diagnostic capacity of the National Health Service (NHS) in the UK

[204, 45, 55].

There are multiple studies which indicate that the main improvements to be made are in

better triage and referrals to specialised diagnostic tests [191, 45]. However, a key point of

the Richards’ review is the need for upgraded facilities and diagnostics [166]. Furthermore,

any improvements should aim to make the diagnostic process easier, more effective and more

efficient.

In this thesis, we focus on improvements to the diagnostic pipeline. Diagnostics typically

involves the following steps:

1. Data Acquisition - A specialised tool or scanner is used to acquire information about

the patient’s pathology

1
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2. Post-processing - This typically involves using the acquired data to reconstruct a diag-

nostic image followed by tools to better highlight key areas of the image

3. Analysis - A range of tools from image segmentation to cardiac strain estimation provide

useful information to a radiologist/clinician.

4. Diagnosis - Using all available analysis and images, a clinical radiologist produces a

diagnostic report with a path to treatment

1.1 Motivation

Ultrasound and MRI are two imaging modalities that do not make use of ionising radiation.

They are favourable for patients with particular needs such as pregnant women or with certain

pathologies. For example, MRI may be used in cases where a CT scan cannot confirm a

diagnosis of a particular cancer. Ultrasound is fast, efficient and cheap but is limited in its

diagnostic capabilities. However, MRI is expensive, slow and can incur a degree of patient

discomfort [186, 9].

The physics of MRI involves the use of large magnets which require a lot of maintenance

and cooling. Typically, larger magnets generate images with less noise and higher quality but

as a result become increasingly more expensive. The cost of such an expensive machine is

subsequently - in one way, or another - passed onto the patient; the cost of the machine itself

and the cost of its maintenance [112, 8, 65].

One of the things that makes MRI expensive to hospitals and to the state is not only these

costs. Rather, it is the fact that only a limited number of these scans can be completed in a

day due to the difficulties in acquisition. If more scans could be completed, the overall relative

cost to the hospital may be reduced.

MRI acquisitions can take up to 45 minutes [89, 197, 137]. In the case of cardiac MR (CMR),

this also requires electrocardiogram (ECG) gating in order to time the scanner acquisition with

the phase of the heart [132]. This slow acquisition time can cause the patient a great deal
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of discomfort: 1) the MRI scanner is a claustrophobic environment for many 2) keeping still

for this long period of time for certain patients is very difficult 3) many types of MRI scan

will require the patient to hold their breath multiple times for prolonged periods, such as with

abdominal and cardiac MR - some patients are simply not able to do this. If it were possible to

acquire these images more quickly, there would be a significant improvement to the cost-benefit

of MR and to patient comfort.

Further to this, with the advent of point of care MRI which typically use low field strength

magnets [160, 200, 202], acquisitions tend to suffer from more corruption, mostly from thermal

noise by lack of a stronger, more conventional magnet [167]. In these cases, conventional MR

reconstruction techniques may struggle to generate diagnostic-grade images.

MRI acquisition does not take place in the same way as a digital camera. Instead, acquisition

takes place in an abstract space where individual data points represent an amalgamation of

information about the resulting image. Due to the nature of the acquisition, it is possible to

generate diagnostically meaningful analyses without conventionally acquiring the entirety of

the data. This speed up in acquisition would allow more scans to be completed [121, 28]. This

can also be combined with new MRI technologies such as Parallel Imaging (PI) where multiple

parts of the data are acquired simultaneously by exploiting a type of spatial redundancy.

In this thesis, we focus on these types of acceleration in the MRI acquisition process by leverag-

ing the data-driven approach of deep learning. We also investigate the possibility of mitigating

for noisy MR scanners.

1.2 Objectives and Contributions

The objective of this thesis is to provide novel ways to perform tasks involved in the MRI

process with accelerated acquisition processes. This can be achieved in a variety of different

ways and hence we focus just three main concepts:

1. Exploiting motion for MRI reconstruction
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2. Performing diagnostic report generation without fully sampled data

3. Probabilistic Modelling for MRI reconstruction

The thesis was undertaken mainly using data-driven approaches facilitated by deep learning

algorithms. Deep learning has been the main driving force in a new-era for medical imaging.

Exploiting motion for MRI reconstruction

In cardiac MRI, it is useful to acquire a video of the heart, called a cine, rather than just a

single image. However, cine acquisitions are time-consuming as we require multiple time frames

of data. Furthermore, they are uncomfortable for the patient due to needing multiple breath-

holds. Accelerated MRI for this case of dynamic imaging is thus of the utmost importance. In

this thesis, we identify motion estimation as being a key component for increased fidelity in

accelerated acquisitions. We show that cardiac motion estimation from accelerated acquisitions

are good enough for functional motion-based reconstruction models to be implemented. We

show that not only can we improve reconstruction quality, but also improve scan times from

45 minutes to under 1 minute (for particular use cases).

This work, spanning over Chapters 3, 4 and 6, resulted in the following publications:

• Seegoolam, G., Price, A., Hajnal, J. V., Rueckert, D. (2020). Deep Learning for Robust

Accelerated Dynamic MRI Reconstruction for Active Acquisition Pipelines. Abstract

1003, 29th Annual Meeting and Exhibition International Society of Magnetic Resonance

in Medicine, 2020.

• Seegoolam, G., Schlemper, J., Qin, C., Price, A., Hajnal, J. V., Rueckert, D. (2019). Ex-

ploiting Motion for Deep Learning Reconstruction of Extremely-Undersampled Dynamic

MRI. International Conference on Medical Image Computing and Computer-Assisted In-

tervention, 2019.

Diagnostic Report Generation for Acceleration MRI acquisitions
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MRI is used as an imaging tool for diagnostic purposes. However, smart diagnosis does not

necessarily require an intermediate image reconstruction phase. The data generated in the im-

age reconstruction is all contained within the acquisition signal. Hence, it should be possible to

streamline the diagnostic process by going straight from the acquisition signal to the diagnosis.

In particular, we leverage diagnostic text reports straight from multiple clinical radiologists in

order to test the hypothesis. We create an image captioning model that is capable of generating

accurate diagnostic text reports using only a fraction of the conventionally acquired signal.

This work, found in Chapter 5, resulted in the following publication:

• Gasimova, A. †, Seegoolam, G. †, Chen, L., Bentley, P., Rueckert, D. (2020). Spatial

semantic-preserving latent space learning for accelerated DWI diagnostic report gener-

ation. International Conference on Medical Image Computing and Computer-Assisted

Intervention, 2020.

Probabilistic Modelling for MRI reconstruction

The question of loss functions or objectives in optimisation MRI reconstruction pipelines is one

of long debate. There have been several works which introduce many different loss functions

and evaluation metrics which each have certain strengths and weaknesses. A large part of this

is caused by the lack of perfect, real MRI data - there are always imperfections in the deep

learning training process. In this chapter, we approach the use of probabilistic modelling to

mitigate for this underlying corruption and to achieve greater fidelity image reconstructions

whilst also accelerating the MRI acquisition process.

This work is main contained in chapters 6 and 7. There are currently no publications from this

work but there are intentions to publish two papers with the following titles:

• Motion Exploitation for Highly Undersampled Cardiac MR Cine Reconstruction using

DDPMs.

†
These authors contributed equally to this work
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• Unsupervised Corruption Mitigated Accelerated MR reconstruction using Data Consis-

tent Decomposed Cascading DDPMs.

1.3 Thesis overview

The overall thesis is structured as follows:

• Chapter 2 - A background into MRI and the tools in deep learning required to understand

the contents of this thesis

• Chapter 3 - An investigation about the incorporation of motion in the reconstruction

process for dynamic MRI. We investigate two types of approach using vanilla CNN and

recurrent units.

• Chapter 4 - Focus on improving our proposed motion-based reconstruction algorithm by

ultimately refining the motion estimate. We investigate a variety of different existing

methods and also explore how abundant segmentation data can be used to influence the

learning process for better quality cine reconstructions.

• Chapter 5 - Introduces the idea of accelerated MRI for diagnostic report generation. We

show that we can learn from unstructured reports straight from clinical radiologists and

generate a report generation model that uses only accelerated acquisitions.

• Chapter 6 - Explores the use a new class of probabilistic models called diffusion models

for the cine reconstruction of accelerated dynamic MR data. We combine the ideas from

Chapter 3 into the diffusion model to generate an overall more powerful reconstruction

model

• Chapter 7 - We conduct a thorough investigation of diffusion models for high fidelity MRI

reconstruction. A series of controlled experiments are ultimately combined to generate a

powerful probabilistic model from accelerated MRI reconstruction. This is evaluated on

a large knee MRI dataset which contains noise and other corruptions.
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• Chapter 8 - This chapter concludes the thesis with an overview of the achievements in

the thesis and possible directions for future work



Chapter 2

Background

2.1 Introduction

In this chapter, we aim to provide an overview of the problem statement and the techniques

used in the thesis for the reader to understand the content in the succeeding chapters. The

literature in MRI reconstruction is vast, just as in the literature in deep learning. In order to

understand this thesis, the main points that will be reviewed in this introduction are:

1. MRI data acquisition and reconstruction — k-space data acquisition, reconstruc-

tion, parallel imaging

2. Diffusion Models — a method for generative modelling

3. Image quality metrics — PSNR, SSIM, HFEN, VIF

8
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2.2 MRI data acquisition and reconstruction

In this section, we outline the basics of MR for image reconstruction. Data acquisition in MR

does not occur in the same way as with a digital camera. Rather than imaging data being

acquired pixel by pixel, MR acquires data in frequency space, similar to radio communications.

This frequency space is the Fourier space or more commonly called the k-space. Further to

this, data is typically acquired in shots whereby in a single shot, multiple k-space frequencies

are acquired with the trajectory of the data acquisition in k-space chosen by the user. Some

trajectories will be more beneficial for imaging certain anatomical parts; for example, radial

trajectories are preferable for brain imaging. The functionality of the MRI scanner, such the

acquisition of the k-space data and the specification of the sampling trajectories, depend on large

magnets, magnetic field gradients, radio-frequency (RF) pulses and magnetisation dynamics.

The Bloch equation describes the Larmor precession of magnetisation under the influence of a

magnetic field in a similar way to moments/torque acting on a gyroscope. We refer the reader

to [58] for a detailed overview of the physics of MR acquisitions. Some may also find [4] and

[40] to be a useful reference.

In brief, different tissues types generate different signals in k-space. This is controlled by two

fundamental properties of the tissue known as T1 and T2 which are the relaxation times for

the tissue’s magnetisation in the longitudinal and transverse planes. Different tissues have

different relaxation times allowing them to be distinguished during the image reconstruction

process. Furthermore, since different tissues have magnetisations that decay at different rates,

it is possible to generate images of varying contrast by designing when to make the acquisition

of the signal. For example, in T2 weighted imaging, fat and water generate large signals that

appear bright in images. T1 weighted images on the other hand generate large signals for only

fat. Proton density weighted images generate high signals in areas of high hydrogen density by

minimising the impact of T1 and T2 decay.

Diffusion weighted images (DWI) instead depend on a more involved mechanism in order to

detected areas of restricted diffusion [75]. With ischaemic brain tissue, sodium accumulates
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within cells causing water to build up within the cell. Water outside of the cell is able to

move freely. During DWI, a magnetic gradient pulse is applied to induce a phase shift in the

precession of the magnetisation. As water moves around the body, an opposite pulse is applied

to remove the phase shift applied. However, water that has moved will experience a different

phase shift to the one that was applied and thus will have gain a net phase shift. The Brownian

motion of water means that the phases acquired should be random and thus dephased causing

the accumulated signal generated to be small or zero. However, for water that has not moved,

such as that trapped in cells due to restricted diffusion, will generate large signals as these

water particles will be locally in-phase.

The process of applying RF pulses and magnetic gradients followed by the signal acquisition

is known as an MR sequence. Different MR sequences are more suited to weighting particular

tissue properties than others and ultimately depends on the type of contrast required in the

resulting image. [79, 185, 7] provides a suitable introduction into the most common MR

sequences.

2.2.1 MRI Data Acquisition

The magnetic gradients, G, of the MRI scanner dictate the k-space trajectory taken during the

scan as shown in equation (2.1).

k(t) =
γ

2π

∫︂ t

0

G(t′)dt′. (2.1)

From this, it can be understood how the signal read by the receiver coils, y(t), can instead be

written as a function of k-space position instead of time, i.e. y(k). Fundamentally, y(k) can be

related to the image/tissue magnetisation, m, via magnetisation dynamics. More specifically,

the closed form solution to the Bloch equation results in a Fourier relationship between y and

m. This is shown in equation (2.2).
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y(k) = Re
[︂ ∫︂

r∈R3

m(r)e−i2πk·rdr.
]︂

(2.2)

It should be noted that typically m is complex-valued with orthogonal coils used to measure the

transverse magnetisation in quadrature. This reduces signal noise and consequently generates

a phase that rotates with the transverse magnetisation of the system1. Phase can offer useful

imaging information such as in susceptibility-weighted imaging [109]. This phase is represented

by converting m into a complex value m and y to y. Chapter 7 of [58] provides a detailed

mathematical derivation of this.

y is commonly referred to as the k-space. By dimensional analysis it can be seen that the space

k is measured in units of inverse distance. The short discrete form of equation (2.2) can be

written as:

y = FFT(m) = Fm. (2.3)

Similarly:

m = IFFT(y) = FHy. (2.4)

Typically, the reconstruction viewed by a radiologist is the magnitude of the image, |m|.

2.2.2 k-space properties

Since the medical image is the inverse Fourier transform of the acquire signal, some basic Fourier

properties determine the image generated. First, the field-of-view (FoV) of the image generate

is determined by the spacing between data collected in k-space. The data collected in k-space

occurs in three directions:

1when viewed in the rotating frame of reference of the MR system
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• Frequency Encoded (FE) - This is a measurement of the continuous signal described

above. The spacing between frequency encoded measurements, ∆kx, depends on how

quickly the signal is sampled and incurs no time penalty on the overall acquisition time.

In the case of Cartesian k-space sampling, this refers to the acquisition of a single line in

k-space.

• Phase Encoded (PE) - This refers to the number of lines in k-space to make. The spacing

between each line in k-space, ∆ky, is specified by the operator

• Slice selection - The gradient of the z-plane coil determines the thickness of the slice

acquired in the subject. Stronger gradients allow more precise slices to be acquired. Spe-

cialised scanners may also use phase encoding in the z-direction but will incur significant

time penalty due to the requirement of multiple slice acquisitions.

The relation between the FoV and the k-space spacing is simply:

FoV = mmax =
1

∆k
. (2.5)

Furthermore, the resolution of the image generated is determined by the maximum point in

k-space acquired:

Resolution = ∆m =
1

2kmax

. (2.6)

In order for the image to be reconstructed with the properties outlined above, it is neces-

sary to introduce the Nyquist-Shannon sampling theorem: ”A bandlimited continuous-time

[continuous-spatial] signal can be sampled and perfectly reconstructed from its samples if the

waveform is sampled over twice as fast as its highest frequency component” [142]. In terms of

spatial Fourier coefficients, this is because between two sampled points, there may be higher

frequency signals that could fit in between these two points. Hence, if we have knowledge of the

highest frequency present, we can choose to sample at this high frequency to ensure any changes
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Figure 2.1: Examples of the effect of different k-space sampling on the resulting recon-
struction |m|. Top row shows the k-space and sampling points and the bottom row is
the reconstruction formed from the direct IFFT followed by taking the magnitude of the
complex output. The red dots indicate points where k-space samples were taken. From
left to right: fully-sampled k-space with spacing ∆k and maximum sample kmax, k-spacing
is sampled half as frequently, k-space is sampled only to a quarter of kmax but with spacing
∆k, random binomial sampling. Data taken from the UK BioBank (see section 3.7.1 for
more information).

between those two original points are captured. To capture all possible detail, we would need

to sample at twice the frequency of the highest component since a single cycle of a waveform

crosses zero at half of its time period/interval.

In terms of MRI, if the highest frequency in the scanner we sample is kmax, then the resolution of

the image will be only half as much as dictated by kmax, as demonstrated by equation (2.6). In

summary, if the signal is not properly sampled, it would violate the Nyquist-Shannon sampling

criteria and thus introduces imaging artefacts into the reconstruction such as in Figure 2.1 [40,

64, 56].
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2.2.3 Compressed Sensing

Whilst the Nyquist-Shannon sampling theorem requires a certain number of measurements

to perfectly reconstruct the image, the underlying k-space signal is highly compressible [28,

36]. Compressed Sensing (CS) is based on the concept that the sensor signal can be sparsely

represented and thus we can drastically reduce the number of sensor measurements made [31,

30]. There are three system properties required to fulfil the requirements for the CS-based

image reconstruction [40, 56]:

1. Sparsity : The sensor signal, i.e. k-space, must have a sparse representation. Some meth-

ods may transform the sensor space into an even more sparse representation

2. Incoherence: The direct reconstruction of the image from undersampled k-space (called

a zero-filled reconstruction) should result in aliasing artefacts that are incoherent and

appear as though they are noise

3. Nonlinear reconstruction: Rather than use a direct IFFT, the image should be recon-

structed using a non-linear optimisation algorithm that ensures the reconstruction is con-

sistent with the acquired data in k-space but also enforces the sparsity in the transform

domain.

The study in [28] is the first to apply this concept to MRI reconstruction. Rather than fully

acquire the k-space required by the Nyquist-Shannon sampling theorem for the desired prop-

erties of the image reconstruction, lines in a Cartesian k-space are randomly sampled. The

reconstructed image m is then obtained by solving the following optimisation problem:

min ||Ψ(m)||1s.t.||Fm− y||2 < ϵ. (2.7)

Here Ψ is the sparsity transform which is commonly chosen to be a wavelet transform or finite

differences and is typically solved using a Langrange multiplier λ.
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2.2.4 Conventional Reconstruction Algorithms and Parallel Imaging

A more generalised form for the problem of MR reconstruction from undersampled k-space is:

argmin
m

λ||Em− y||22 +R(m), (2.8)

where E = DF represents the application of the Fourier transform and the k-space undersam-

pling mask, D and R is a regularisation term (such as the sparsity requirement). This provides

us with the solution to equation (2.3) which is rewritten below:

y = Em+ δ, (2.9)

where δ is a Gaussian noise caused by measurement imperfections (which manifests as a Rician

noise in single-coil magnitude images). For clarity, m is a column vector of complex values that

can be reshaped into the desired format (image or volume): m ∈ Chwd, where h,w, d are the

height, width and depth of the volume/image. Similarly, y ∈ CM where M is the number of

k-space measurements made. In the fully-sampled case, M = hwd. In the oversampled case,

M > hwd and (2.9) can be solved using the Moore-Penrose inverse which can be found using

SVD (or a range of other faster methods) [53, 38]. In the undersampled case, M < hwd which

is the focus in this thesis.

The choice of regularisation term R changes the solutions generated. An L1 norm recovers

LASSO regularisation whilst an L2 norm recovers ridge regression, a special case of Tikhonov

regularisation [14]. Total variation (TV) can also be used but tends to generate cartoon-like

artefacts and should be considered case-by-case [39, 72, 33, 47, 6]. Wavelet transforms have

also been popular in CS-MRI [48] but more recently, dictionary learning has been shown to

generate high fidelity reconstruction, particularly in the case of spatio-temporal reconstructions

[73, 54].

In terms of completing the above optimisation, a variety of different methods have been ex-
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plored. Naive gradient descent requires convexity and differentiability which are not always

satisfied by choice of regularisation e.g. L1 norm. The (fast) iterative shrinkage-thresholding

algorithm ([F]ISTA) [41] is a well-studied approach to the optimisation in the case of L1 regular-

isation by use of proximal gradient descent and a shrinkage operator. Many other ISTA-based

methods have since been proposed such as backtracking (B)ISTA, eigenvalue-free (EF)ISTA

and fast (F)EFISTA [41, 195].

Alternating directions method of multipliers (ADMM) is another popular method for optimi-

sation whereby an auxiliary variable introduces convex relaxation which allows the subsequent

problem to be solved with the augmented Langrange method. Unlike ISTA, the choice of regu-

larisation is far ranging from TV to dictionary learning [73]. Variable splitting approaches also

involve introducing auxiliary variables for convex relaxation resulting in multiple subproblems

that can be solved individually [44, 199, 103, 123].

Parallel Imaging is a paradigm in which multiple receiver coils are employed around the scanner

to capture data in a locally-sensitive manner. Each coil is accompanied by an image-domain

sensitivity map which m is subject to. This results in extra information available to the

reconstruction process where coil sensitivities embedded in the acquired data provides extra

redundant spatial information. In general, the forward model is written as E = UFSm where

S represents the coil sensitivities in the spatial domain. This noise reduction is not so high if

the data is undersampled. The signal-to-noise ratio (SNR) in the reconstructed image using

parallel imaging is:

SNRR =
1

g
√
R
SNR1, (2.10)

whereR is the rate at which data is undersampled, g is a geometry dependent noise amplification

factor and SNR1 is the SNR of the fully-sampled acquisition.

In the case of compressed sensing parallel imaging, various methods have been explored but

mostly fall into the category of SENSE-based methods where coil sensitivity maps are estimated

for the reconstruction or GRAPPA-based methods where missing k-space values are estimated
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using a specified kernel defined by a set of autocalibrating lines (ACL) in k-space. ESPIRIT

is a method that combines the GRAPPA and SENSE using an eigenvalue approach to solving

for the coil sensitivity maps explicitly [21, 16, 62].

2.2.5 Dynamic Reconstruction

Whilst the above reconstruction techniques can be used in the case of cine MRI, where one

wishes to reconstruct a sequence of images to form a video, there are specific reconstruction

algorithms that exist.

k-t BLAST and k-t SENSE reconstruct dynamic sequences by exploiting spatiotemporal corre-

lations in m-f space (spatial image-temporal frequency space) which in the literature is referred

to as x-f space. In particular, a filter is devised using a calibration signal (low resolution recon-

struction) along with knowledge of the signal covariance to estimate how signals in k-t space

are distributed in x-f space [24, 131]. This is subsequently generalised to k-t FOCUSS where

the signal covariance term is replaced with an iteratively updated weighting matrix [35, 42].

k-t SLR is another method which exploits x-f space sparsity but combines it with a spectral

decomposition prior [51]. Dictionary learning has also been combined with temporal gradient

sparsity for dynamic CS MRI reconstruction [54].

2.3 Image analysis tasks post-acquisition

Once an MR image is acquired, it can be subject to numerous types of analysis. For example,

segmentation of MRI brain images is vital for image-guided interventions and surgical planning

[63]. The complex structure of the brain also makes segmentation an important tool for aiding

in pathology diagnosis and analysis the development of the brain. In the case of cardiac imaging,

quantifying the volumes of the ventricles and the ejection of blood is only possible with accurate

segmentations [52, 152]. Post image reconstruction, highly quality segmentations can only be

generated in the reconstruction is of high fidelity and faithful to the patient. The resulting
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images may also be used for direct pathological classification without any prior segmentation.

The use case of reconstruction MR images are evidently numerous and with a radiologist in

between the reconstruction phase and analysis phase, a high level of interpretability is possible.

Clinical reports that are written by a radiologist often summarise the findings of any analysis

conducted on the image. Recently, research has been conducted to attempt to leverage the

abundance of clinical report data for diagnosis by automating the radiological report generation

process [130, 203, 124] which we further investigate in Chapter 5.

2.4 Diffusion Models

In this section, we introduce diffusion models as an approach for generative modelling. For a

review of deep learning, we refer the reader to [179], [155] and [77].

Discriminative regressive models create implicit decision boundaries in the data space allowing

data points to be discriminated. Typically, these models generate the value which is of the

greatest likelihood rather than producing a distribution of values. For example, an L2 training

loss - often used in MRI reconstruction training - is directly related to maximum likelihood

estimation (MLE) under the assumption of normally distributed errors as shown in equation

(2.11).

p(Y|X, θ) =
∏︂
i

p(yi|xi, θ)

=
∏︂
i

p(yi − fθ(xi))

=
∏︂
i

N (yi − fθ(xi), σ
2)

log p(Y|X, θ) = C − 1

2σ2

∑︂
i

||yi − fθ(xi)||2,

(2.11)

where x is the random variable that conditions the model, y is the random variable we wish

to predict, θ are learned parameters/weights of the predictor f , σ is the noise level in the data
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and C is a constant. Hence, an MRI reconstruction model trained with an L2 loss will generate

a singular output that has maximised the likelihood. (The key assumption here is identically,

independently distributed (i.i.d.) noise for each data point which may not always be the case).

With generative models, the aim is to learn the joint distribution between the input and output,

p(x,y) which is usually the data distribution, p(D). Rather than simply discriminate between

data points, generative models are able to generate new data points using the learned data

distribution. Diffusion models are an approach to generative modelling whereby the score

function is estimated by a NN and the score function is all that is needed in the guidance of

a predefined stochastic process for data generation. This contrasts to GANs where adversarial

training is employed and is typically prone to mode-collapse or other difficulties in training

[183, 162, 178, 192, 171, 108]. It also contrasts to normalising flows where a combination of

low dimensional latent variables, expensive training the requirement of constrained, invertible

transformations mean that expressiveness is limited [164, 193]. Diffusion models are high

dimensional, straightforward to train and expressive achieving high fidelity and log-likelihoods

[170].

We redefine x as the target image to be generated for this section only. Diffusion models

decompose the image generation process, p(x), into a series of T intermediates steps whereby a

latent variable xt is generated according to a distribution pt at training time or qt at inference.

The distribution qt(xt|x) is well-defined beforehand and the process of generating this latent

variable given x can be summarised in the form of a stochastic differential equation:

dx = f(x, t)dt+ g(t)dw (2.12)

Here x is our latent variable being diffused, w is a Wiener process, t is the index of said process

i.e. the intermediate step, f is the drift term and g is the volatility term. For certain choices

of f and g, pt(xt|x) has a closed form expression and Fokker-Plank can be used to show that

the stochastic process transforms our data at t = 0, x0 = x, to something close to N (0, I)

[170]. This standard normal distribution forms our prior for the sampling process where a noise

removal occurs at each step that gradually transforms the random noise xT to our data point
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Figure 2.2: Image taken courtesy of [196]. Here, z = xT .

x0. This is summarised in Figure 2.2 with an illustration in Figure 2.3.

Denoising diffusion probabilistic models (DDPMs) are a variant of this stochastic modelling

process and is the flavour of diffusion model used in this thesis. The intermediate latent

variables are set by predefined distributions. The forward diffusion process has a prescribed

distribution as follows:

qt(xt|xt−1) = N (xt;
√︁
1− βtxt−1, βtI) (2.13)

Some useful variables to define the variance schedule of the intermediate distributions are:

αt = 1−βt, α̃t =
∏︁

t(αt) and βt = β0+
(βT−β0)

T
t where T is the chosen number of diffusion steps

in the model and β0, βT ≪ 1 controls the prescribed variance schedule.

It can be shown that equation (2.13) is equivalent to:
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Figure 2.3: Image taken courtesy of [170]. Illustration depicting the forward and reverse
diffusion process.

qt(xt|x0) = N (xt;
√
α̃x0, (1− α̃)I) (2.14)

which means that xt can be computed using the reparameterisation trick:

xt(x0, ϵ) =
√
α̃x0 +

√
1− α̃ϵ, (2.15)

where ϵ ∼ N (0, I). Similarly, for the reverse process:

pt(xt−1;µθ(xt, t), βt), (2.16)

where µθ is a function that is learnt via the following training process and θ are the weights of

the NN. The training objective is:

E [− log pt (x0)] ≤ Eq

[︃
− log

pt (x0:T )

qt (x1:T | x0)

]︃
= Eq

[︄
− log pT (xT )−

∑︂
t≥1

log
pt (xt−1 | xt)

qt (xt | xt−1)

]︄
,

(2.17)
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where we note that pT is a standard normal distribution. This can be simplified to a sum of

KL divergences between the reverse and forward distributions:

L = C +
∑︂
t

Lt = C +
∑︂
t

DKL(qt(xt|xt+1,x0)||pt(xt|xt+1)) (2.18)

where C is some constant.

A convenient form for µθ(xt, t) is:

µθ(xt, t) =
1√
α̃

(︂
xt −

βt√
1− α̃t

ϵθ(xt, t)
)︂
, (2.19)

where ϵθ now performs the action of the NN. Combining this with equations (2.13)- (2.16)

means that we can reduce our loss function to equation (2.20).

L = Ex0,ϵ,t

[︂
γt||ϵ− ϵθ(xt, t)||2

]︂
(2.20)

where the weighting in our variational lower bound γt is discarded as suggested in [161] in

favour of sample quality rather than log-likelihood. It has previously been suggested to keep

the weighting and instead using importance sampling to reduce the variance of the bound at

training time [193].

In essence, we train a neural network to denoise noisy images in a similar fashion to a denoising

autoencoder. At inference, we sample from a normal distribution and use our NN to predict

the noise present in the noisy image. This noise prediction is partially removed from the image

at iteration t = T to advance towards the next iteration t − 1. This repeats until t = 0. This

noise removal is given by:

xt−1 =
1
√
αt

(︂
xt −

1− αt√
1− α̃t

ϵθ(xt, t)
)︂
+
√︁
βtz, (2.21)
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where z ∼ N (0, I).

In the forward SDE, equation 2.12, we state the forward diffusion process transforms our data

into a standard normal distribution. In the case of DDPMs, a flavour of diffusion model used

in this thesis, the drift and volatility terms are set by the functions in equations (2.22) and

(2.23) [170].

f(x, t) = −1

2
βtx (2.22)

g(t)2 = βt (2.23)

Every forward diffusion process has a reverse process which itself is a diffusion process [1]:

dx = [f(x, t)− g(t)2∇x log qt(x)]dt̃+ g(t)dw̃, (2.24)

where w̃ and t̃ are in the reverse time direction. This reverse diffusion process requires the

gradient of data density, i.e. the score function, to be known or learnt: sθ = ∇x log qt(x). The

SDE formulation in the reverse direction is equivalent to the iterative denoising autoencoder

formulation above and in fact sθ(xt, t) ≈ −ϵθ(xt, t)/
√
1− αt̃. Using Euler-Maruyama to dis-

cretise the reverse diffusion process in equation (2.24) recovers the noise removal process in

equation (2.21) showing the equivalence of score-based generative modelling and DDPMs [170,

193, 196].

2.4.1 Deep Learning Reconstruction

One typical approach to CS MRI with deep learning is replacing terms in an algorithm with

a more general image denoiser. This image denoiser can take many forms such as an explicit

filtering in some transform domain [34]. However, recently, deep learning based image denoisers

have found success for image restoration tasks [118, 100, 115, 90]. It has been shown that
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denoising CNNs (DnCNN) can be used for the task of MRI reconstruction by training them

to remove noise from knee images. This is then used to replace the proximal mapping step in

an ADMM-based reconstruction [149, 100]. These type of approach is termed ‘plug and play

(PnP)’.

Beyond the PnP approach, end-to-end CNN CS-based optimisation has been extensively stud-

ied. The conventional reconstruction algorithms discussed in section 2.2.4 have been extended

with deep learning. Typically, certain steps of the optimisation are replaced with trainable

CNNs. For example, direct proximal gradient descent has a variant called PGD-Net [153],

variable splitting has a variant called deep-cascade CNN (DC-CNN) [93], ADMM-based opti-

misation has ADMM-Net [82] and FISTA has FISTA-Net [198, 154].

For parallel imaging, GRAPPA-Net was developed as an end-to-end deep learning variant of

GRAPPA. Variational network (VN) is a method based on gradient descent whereby a Field-of-

Experts model is generalised to form a series of convolutions with trainable activation functions

[29, 110]. In contrast, Model Based Deep Learning (MoDL) network [103] was derived using

Taylor-expansion based unrolling (similar to DC-CNN) but used conjugate gradient descent

(CGD) to compute the multi-coil data consistency term rather than, for example, an implicitly

learned proximal mapping [103, 123, 189]. Although it requires using CGD, MoDL can still

be trained end-to-end (E2E). VN and MoDL both require precomputed coil sensitivity maps

that can be obtained with ESPIRIT. E2E-VN [172] extended the VN to learn to generate the

sensitivity maps and thus at test-time does not require any pre-computation.

Also in parallel imaging, sensitivity coil networks (SCNs) reconstruct the image directly by using

precomputed sensitivity maps to enforce data consistency before recombination of individual

data-consistent coil images [126]. The data consistency with SCNs can be enforced using

gradient descent (like in VNs), proximal mapping (like in MoDL) or with variable splitting

[123]. Parallel coil networks (PCNs) [126, 138, 176] on the other hand enforce data consistency

on the coils individually analogous to DC-CNN. They reconstruct all coil images explicitly

leaving the network to learn how to weight the individual coil data in the reconstruction process

rather than explicitly using conjugate gradient descent and sensitivity maps to perform data
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consistency [103]. The study in [151] extend PCNs by applying regularisation on an implicitly-

learned coil-combined image rather than on individual coil images. For a more detailed review

of parallel MRI reconstruction algorithms, we refer the reader to [163].

In this thesis, there is a focus on motion-based accelerated dynamic MRI cine reconstruction

with deep learning which we are the first to approach in an E2E framework. Post-publication

of the content in Chapter 3, we have been made aware of another approach to motion-based

reconstruction. The work by [190] exploits motion information to warp fully-sampled reference

acquisitions to aid the reconstruction process. This approach is very similar to motion com-

pensation/correction mechanism presented in kt-FOCUSS [42]. However, it is different to the

content in Chapter 3 since we do not require fully sampled references and we introduce mo-

tion as part of unrolled reconstruction optimisation itself rather than only as an independent

constraint.

2.5 Image Quality Metrics

In order to evaluate the quality of the generated images, we require some quantitative metrics

that can aid in making objective judgements about proposed methods. Standard metrics include

the root normalise mean squared error (RNMSE) which can be calculated as follows:

RNMSE =
1

σ

√︄∑︁M,N
i,j (yij − ŷij)

2

MN
, (2.25)

where yi is the reference image/ground truth, ŷ is the prediction, MN are the total number of

pixels in the image and σ = ymax − ymin is the data range.

Another popular metric is the PSNR, which for data normalised between 0 and 1 is given as:

PSNR = −10 log10
[︂ 1

MN

M,N∑︂
i,j

(yij − ŷij)
2
]︂
. (2.26)
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Whilst these metrics are easy to interpret, [25] proposes to develop metrics that are closer in

line with the human visual system (HVS). The image is decomposed into a series of wavelet

coefficients Cn,j where j is the subband and n is decomposition number from a Gaussian Scale

Mixture Model (GSM; see [20]). Combining this with a distortion model allows the information

present in the reference and image prediction to be calculated. The visual information fidelity

(VIF) metric is a ratio between the information extracted from the test image and the reference

image [25]2. In particular, it should be noted that VIF was developed for use with videos.

Further work into the HVS led to the development of another popular metric known as the

structural similarity index metric (SSIM) [26]:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ, (2.27)

where luminance, contrast and structure expressions are given below:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(2.28)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(2.29)

s(x, y) =
σxy + c3
σxσy + c3

, (2.30)

where ci are constants, and µ and σ are the pixel mean and standard deviation/covariance in a

chosen window size W . In this thesis, the SSIM is calculated with α = β = γ = 1 and we report

the average SSIM across all sliding windows of the image. We use the SSIM implementation

provided in the Python skimage package.

Finally, in [49], the high frequency error norm (HFEN) was used to quantify the quality of

2The implementation used in this thesis can be found at https://github.com/aizvorski/video-quality/
blob/master/vifp.py

https://github.com/aizvorski/video-quality/blob/master/vifp.py
https://github.com/aizvorski/video-quality/blob/master/vifp.py
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edge information and small details. This involves convolving the Laplacian of Gaussians (LoG)

filter with the images to highlight high frequency information. HFEN is then the L2-norm of

difference between LoG filtering the reference image and prediction3:

HFEN =

∑︁
ij ||[LoG(y)− LoG(ŷ)]ij||2∑︁

ij ||[LoG(y)]ij||2
. (2.31)

3The implementation for LoG used in this thesis can be found at https://github.com/styler00dollar/
pytorch-loss-functions/blob/main/vic/filters.py

https://github.com/styler00dollar/pytorch-loss-functions/blob/main/vic/filters.py
https://github.com/styler00dollar/pytorch-loss-functions/blob/main/vic/filters.py


Chapter 3

ME-CNN: Motion Exploiting

Convolution Neural Networks for

Motion-based accelerated MR cine

reconstruction

The problem of accelerated acquisition for cine MRI has been recently tackled with

deep learning techniques. However, current state-of-the-art approaches do not in-

corporate a strategy to exploit the full temporal information of cine MRI which can

aid in producing higher quality cine reconstructions. In this paper, we propose a

novel method for exploiting the full temporal dynamics of cine MRI for reconstruc-

tion. Specifically, motion estimations are derived from undersampled MRI sequences.

These are used to fuse data along the entire temporal axis to produce a novel data-

consistent motion-augmented cine. This is generated and utilised within an end-to-

end trainable deep learning framework for MRI reconstruction. We also explore a

recurrent network approach to this problem with promising results.

28
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3.1 Introduction

The problem of image reconstruction for accelerated MRI has been a well-explored problem

with approaches ranging from sensitivity encoding to Bayesian dictionary learning [16, 54]. The

process of MR image reconstruction typically involves the reconstruction of an image, vectorised

as m, from a set of data collected in the k-space of the scanner, y. The physics of MR imaging

relates m and y through an encoding matrix E which applies coil-sensitivity maps, k-space

sampling mask and a Fourier transform to the image domain. This can be summarised as:

y = Em+ ϵ, (3.1)

Here ϵ represents the noise in the data acquisition. Since MRI data acquisition takes place

in k-space, accelerated acquisition typically involves acquiring fewer samples in k-space whilst

trying to reconstruct with the same resolution in operator-specified image space. This is known

as undersampling. Given the acquired undersampled k-space data, y, the violation of the

Nyquist sampling criterion means that the process of finding the true image, m, is thus ill-

posed and typically ill-conditioned1. In order to estimate the underlying image, m, typically

a regularisation term is added in order to guide the optimisation process to a set of plausible

reconstructions:

α

2

∑︂
i

||Em− y||22 +R(m), (3.2)

where α is a hyperparameter to control the balance between the data term and the regularisation

term.

In this chapter, we explore the use of motion estimation to better exploit the temporal direction

of dynamic MR cine acquisitions. In particular, we do not require intricate motion estimates

from sophisticated methods such as MR tagging ([5]) but instead derive motion estimates

1The least-squares solution with the Moore-Penrose pseudoinverse is extremely sensitive to perturbations in
the acquired data e.g. scanner noise
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directly from the undersampled acquisition. We modify the optimisation in equation (3.2) in

order to incorporate motion into the reconstruction process.

3.2 Related work

More recently, there has been a shift towards deep learning for the reconstruction of MRI via

compressed sensing approaches. Since MRI data acquisition takes place in Fourier space, also

known as ‘k-space’, this generally involves acquiring fewer samples in k-space whilst trying to

reconstruct with the same resolution in image space. However, a direct zero-filled reconstruction

leaves behind aliasing artefacts which drastically reduces perceptual quality. Instead, deep

learning has been used to recover useful information from aliasing artefacts and subsequently

improve image quality [93, 110, 113]. For dynamic MRI, the current widely accepted state-of-

the-art is the DC-CNN studied by Schlemper et al. (2018) which uses cascades of convolutional

neural networks, with a residual connection from the input of each cascade to its reconstruction

output. In addition to this, a data consistency (DC) step is applied to ensure the output of

each cascade is consistent with the original k-space information [93].

In order to exploit the entire temporal domain, motion field estimation is required as will be

explained in section 3.3. Motion estimation has been used in several studies for the purpose

of correcting motion corrupted acquisitions [27, 32, 78]. A framework called k-t FOCUSS

introduce a way to use motion estimation for the purpose of cine MRI reconstruction however

it requires fully-sampled reference frames (see section 4.1.3 for more details; [42, 35]). Qin et

al. (2018) studied the use of unsupervised learning for motion estimation in order to perform

joint cardiac MRI segmentation and motion estimation [114, 74]. This study used fully sampled

MRI cines within a VGG architecture trained to produce an optical flow estimate between a

given frame and a target. The motion estimation technique used was based on Ahmadi et al.

[74]. In this study, we combine the methodology by Ahmadi et al. (2016) and Schlemper et

al. (2018) to a produce a novel, end-to-end-trainable motion-estimating convolutional neural

network, or ME-CNN, which can reconstruct extremely undersampled MRI cines. By explicitly

exploiting motion, we contribute towards building MRI reconstruction models that can harness
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the full temporal domain of the original k-space sequence.

3.3 Unrolled Motion-based Optimisation

Typically, the optimisation process for cine MR reconstruction can be posed as the same inverse

problem from section 3.1. However, there is no explicit mechanism to relate one temporal frame

to another. We introduce a regularising condition binding the k-space of neighbouring frames

allowing the optimisation to be written as in equation (3.3). In this scenario, we consider the

case of single coil imaging with undersampling mask, D, such that encoding matrix E = DF .

α

2

∑︂
i

||DFmi − yi||22 +
β

2

∑︂
i

||DFMimi − yi+1||22 +R(M,m), (3.3)

where i denotes the time frame index, β is a hyperparameter and Mi is the motion matrix

that warps an image-space frame from time frame i to i+1. We note the relationship between

frames in equation (3.4).

Mimi = mi+1∀i ∈ {1 . . . T}, (3.4)

where T is the number of temporal frames in the acquisition.

In order to better understand possible approaches to this optimisation problem, we deconstruct

it into multiple sub-problems using a Lagrange multiplier to link the sub-problems together.

This type of decomposition is sometimes known as variable splitting or Langrangian Decomposi-

tion [2, 3, 123]. Auxiliary variables ui and xi+1 are introduced which allows an explicit denoising

problem to be formulated separate from any other steps such as data consistency. The bounds

on these new auxiliary variables are such that equations (3.5) and (3.6) are enforced.

ui = mi (3.5)
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xi+1 = Mimi = Miui (3.6)

Given the conditions of equations (3.5) and (3.6), the initial optimisation can be written as

equation (3.7).

α

2

∑︂
i

||DFmi − yi||22 +
β

2

∑︂
i

||DFxi − yi||22 +R(M) +R(u), (3.7)

where the motion and image regularisation have been decoupled into separate terms.

Using a simple convex L2 regularisation to for equations (3.5) and (3.6), the full optimisation,

O, becomes as shown in equation (3.8).

O(m,M ; y) =
α

2

∑︂
i

||DFmi − yi||22

+
β

2

∑︂
i

||DFxi − yi||22 +
γ

2

∑︂
i

||ui −mi||2

+
σ

2

∑︂
i

||Mimi − xi+1||2 +R(M) +R(u),

(3.8)

where γ and σ are hyperparameters. γ, α, σ, and β are terms which control the faithfulness of

the reconstruction to the acquired data and are commonly referred to as the noise terms. In the

case of noiseless data, β and α approach∞ and σ and γ can be absorbed into the regularisation

terms.

Four sub-problems can be formed from (3.8), shown in equations (3.9)-(3.12).
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image denoising u = argmin
u

{︄
γ

2

∑︂
i

||ui −mi||2

+
σ

2

∑︂
i

||Mimi − xi+1||2 +R(u)

}︄
(3.9)

motion estimation M = argmin
M

σ

2

∑︂
i

||Mimi − xi+1||2 +R(M) (3.10)

data consistency m = argmin
m

β

2

∑︂
i

||DFmi − yi||2 +
γ

2

∑︂
i

||ui −mi||2 (3.11)

motion-reconstruction x = argmin
x

{︄
α

2

∑︂
i

||DFxi+1 − yi+1||2

+
σ

2

∑︂
i

||Miui − xi+1||2
}︄ (3.12)

Solving these equations lead to closed-form solutions for equations (3.11) and (3.12). Equation

(3.9) is replaced with a CNN denoiser and (3.10) is replaced with a CNN motion estimator. The

solution for (3.11) is a denoising reconstruction following by the requirement that the k-space of

the reconstruction, uk
i is consistent with the acquired data at this frame, yi. This is the closed

form solution in equation (3.13). This is also known as data consistency/fidelity as recovered

in prior studies [93, 49, 177].

mk
i = (αFTDTDF + σI)−1(αFTDTyi + σuk

i ) (3.13)

The solution for (3.12) applies the motion estimate to a reconstructed frame to produce the next
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frame in the temporal sequence. It then applies data consistency with the acquired data at this

frame, yi+1. This is a closed-form solution, equation (3.14). We refer to this step and variants

of this as the ‘DCMAC‘ step which is an abbreviation for data-consistent motion augmented

cine.

xk
i = (αFTDTDF + σI)−1(αFTDTyi+1 + σMk

i u
k−1
i ) (3.14)

In other words, equation (3.14) represents taking the output from the previous cascade/iter-

ation, the denoised frame, and warping it to the next frame where data consistency is sub-

sequently applied. The output from the previous cascade/iteration can be used due to the

enforcement of the condition mi = ui in equation (3.5).

Finally, equations (3.5) and (3.4) allows the expression Mi−1ui−1 ≈ ui to hold meaning that

sub-problem in equation (3.9) can be off-loaded to a CNN denoiser with parameters θ. The

CNN takes as input: the output of the previous cascade, k− 1, and the output of the DCMAC

operation in equation (3.14). These are used to generate a new estimate for the reconstruction

as shown in equation (3.15). This then followed by the data consistency step above in equation

(3.13) before the whole process repeats in an iterative motion-based reconstruction process.

Figure 3.1 illustrates this process.

uk+1 = uk + CNNθ(u
k, xk) (3.15)

3.4 Deep Learning implementation for exploit-

ing temporal consistency

The decomposition in section 3.3 exploits the temporal dimension for image/cine reconstruction.

We would require at least T CNN blocks to ensure that at least every frame is exploited at least

once. Typical cines contain T > 30 frames which would mean fitting 30 or more CNN blocks
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Figure 3.1: The unrolled motion-based reconstruction architecture. Each CNN contains
a motion estimation block, a DC-MAC generator, a set of dealiasing/denoising convolution
layers and a data consistency layer. More information can be found in section 3.5.

into GPU memory. In our studies in this chapter, we use vanilla CNN layers that consume

relatively little memory compared with the U-net architecture. In spite of this, fitting into

GPU memory this many CNN cascades is not possible.

One possible way to ensure that we are able to better exploit every frame in our data acquisition,

is to reduce the number of CNN blocks used. More specifically, we can skip the CNN denoiser

block Ndcmac times before using the next CNN denoiser block2. The total number of iterations

would be Ndcmac × Nc where Nc is the number of CNN blocks (cascades) used. In our initial

study, we focus on extreme acceleration, Af = 51 for Nc = 5 before investigating further with

Nc = {3, 5} for a large range of acceleration rates Af = {4...51}.

The interpretation of this would be to apply the closed form equation (3.14) Ndcmac times

before being fed into a CNN block whereby data consistency is then applied afterwards. The

application of equation (3.14) generates a data-consistent motion-augmented cine (DCMAC). In

our study in the next section (section 3.5), we feed the CNN block with multiple inputs each of

which have been generated with a range of Ndcmac = {0...30}. We also feed the CNN block, with

an ‘initial DCMAC’ which is generated by applying a form of equation (3.14) to the acquired

k-space data i.e. x0 = y (rather than the reconstruction from the previous cascade). We apply

the equation successively several times, specifically, Ninitdcmac = 60 times. The generation of

these inputs to the CNN block is referred to as the DCMAC step. This is elaborated further

2or in other words, apply the DCMAC step Ndcmac times before every CNN denoiser bock
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in the next section.

3.5 Exploiting Motion for Extremely Acceler-

ated Cine MR Image Reconstruction

The aim of this section is to train a neural network to reconstruct m given an undersampled,

zero-filled reconstruction ŷ = FTy by exploiting motion present in the cine MRI. By incorpo-

rating knowledge of the temporal dynamics into the reconstruction algorithm, data across all

temporal frames in cine MRI sequence can be used to dealias any one particular frame.

We propose a novel deep learning approach for extremely-accelerated dynamic MR image recon-

struction by exploiting motion present in MRI cines. The proposed method consists of three

components: a motion estimation network; a data-consistent motion-augmented cine (DC-

MAC) formed by intelligently propagating k-space information along the temporal axis; and a

3D CNN for MR image reconstruction. The use of the DC-MAC enables the incorporation of

the full temporal k-space knowledge into the reconstruction algorithm, where data across the

whole sequence can be utilised for dealiasing each frame. The network is trained end-to-end by

minimising a composite loss function which consists of a motion estimation loss and an image

reconstruction loss.

3.5.1 Methods

In brief, DC-CNN consists of N dealiasing units or ‘cascades’. Each cascade takes a complex-

valued estimate of the reconstruction as input (with additional ‘data sharing’ channels for

neighbouring frames). It subsequently produces another, higher-quality cine as an output.

This output cine is then subject to data consistency [93]. With our ME-CNN, we additionally

provide each cascade with a novel data-consistent motion-augmented cine, also called x-DC-

MAC, which exploits the full temporal information present in the original k-space data (with no

data sharing required). As an additional set of channels, we also provide a method to motion-
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Figure 3.2: The proposed ME-CNN architecture with one example cascade illustrated.
The motion estimator is based on the U-net architecture [68] as shown in Figure 3.3. The
motion field, uc, is used to produce the DC-MACs which are then concatenating with the
prediction from the previous cascade i.e. m̂c−1.

augmented the individual frame predictions from the previous cascade so that they can also

be used for dealiasing. This is called y-DC-MAC. These DC-MACs are produced by learning

a motion field (matrix M from section 3.3), for each cascade, c which is denoted as uc. The

resulting process is illustrated in Figure 3.2 and forms the ME-CNN architecture.

In terms of training, each cascade, c, outputs two values - an optical flow representation and

a predicted MRI reconstruction. These are used in the total loss function described in section

5 which consists of an optical flow loss and a reconstruction loss. In general, the predicted

reconstruction, yc, should improve in quality as you look at the output of deeper cascades. The

prediction from the final cascade is used to produce the reconstruction loss. The optical flow,

ut
c, of the MRI cine for each frame t ∈ {1...T} is used to produce the optical flow loss. In our

study c ∈ {1...N} where N = 5 and T = 30 as thirty different cardiac phases were used in the

construction of the dataset.

3.5.1.1 Motion Estimation

Within each cascade, a prediction of the motion field is made using an optical flow approach

performed on the output of the previous cascade. In the case of the first cascade of the network,
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Figure 3.3: The motion estimator network used within each cascade of ME-CNN is
illustrated. It is based on the U-net architecture with the addition of a convolutional
layer at the start and end of the network. The input to this network is a pair of complex-
valued images we wish to calculate the optical flow between. The feature map sizes for each
convolutional scale in this network from start to end are nf = 64, 16, 16, 16, 16, 16, 16, 32, 64
with tanh and linear activation functions for the final three layers

the original zero-filled reconstruction is used. [74, 114] showed that by training on the MSE

loss between a motion-warped frame and its associated ground-truth, it is possible to learn the

optical flow between frames in an unsupervised fashion. The important part of the loss for the

motion field produced by a single cascade, c, is given by:

Lf
w(mgt;uc) =

∑︂
r,t

||W (mt
gt,u

t
c)−mt+1

gt ||2, (3.16)

where mt
gt is frame t of the ground truth, ut

c is the motion field prediction from cascade c at

time frame t and W (mt
gt,u

t
c) warps frame mt

gt using ut
c and bilinear interpolation. There are

two additional terms Lf
s and Lf

t which regularise the motion field, uc, with respect to its first

order spatial and temporal gradients respectively. The total loss for the motion field output for

a given cascade output in the network becomes equation (3.17) with hyperparameters α and β.

Lf (mgt;uc) = Lf
w(mgt;uc) + αLf

s (uc) + βLf
t (uc). (3.17)
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Figure 3.4: An example of how x-DC-MACs are produced for each cascade in ME-CNN.
The first frame, W (f t

c(t),u
t
c), is the result of warping of frame f t

c(t) with ut
c. Since we

are at the start of the process of generating the x-DC-MAC, f t
c(t) is simply equal to the

zero-filled reconstruction from the original k-space information at time point t, i.e. ŷt.
Data consistency is then applied to collect data from the next frame of the original k-
space, yt+1. This data is collected into the x-DC-MAC to generate the next frame in the
sequence, f t+1

c (t). The process is then repeated using the motion field that warps from
frame t+ 1 to frame t+ 2, ut+1

c .
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3.5.1.2 Data-Consistent Motion-Augmented Cine (DC-MAC)

In order to better incorporate temporal information into the reconstruction of each frame, the

full temporal-axis of the original k-space information is used to produce an intermediate cine

reconstruction. The motion field, uc, from section 3.5.1.1 is used to propagate the acquired

k-space information from one frame, t, to the next frame, t + 1, whilst also acquiring the k-

space information at frame t + 1. This can be repeated iteratively for all subsequent frames

until a k-space is achieved that has collected data from the entire temporal-axis of the original

data. Given the acquisition data, y and a motion field, u, the DC-MAC generation process is

summarised by Figure 3.4. In particular, equation (3.18) shows the intermediate steps in the

DC-MAC production process and equation (3.19) shows how the original k-space information,

x̂, is used in the generation of f t
c , noting that xt represents the zero-filled reconstruction for

frame t.

f t+1
c (t′) = DCt+1 ◦W (f t

c(t
′),ut

c), (3.18)

where DCt+1 is data consistency with the original k-space data, x̂, at frame t+ 1 and t′ is the

frame number of the original k-space data to use as the first frame in the iterative warping

process.

f t
c(t) = ŷt (3.19)

When using the initial condition set by equation (3.19), the desired DC-MAC, which is referred

to as x-DC-MAC, using the motion field from cascade c is given by equation (3.20).

x̂t
xDCMAC(c) = f t+T

c (t) (3.20)

Using mc−1 to generate a set of DC-MACs for the reconstruction of mc. In addition

to the x-DC-MAC, we can use the output prediction of the previous cascade, mc−1, with the

motion estimation of the current cascade, uc, to make further warped projections of the output



3.5. Exploiting Motion for Extremely Accelerated Cine MR Image Reconstruction 41

cine. This is achieved by using a different initial condition from equation (3.19) within equation

(3.18). Instead, f t
c(t) = mt

c−1 is used. The result is the generation of T additional predictive

cines (since there are T frames to create different initial conditions from). This is summarised

by x̂t
yDCMAC(ti, c) = f t

c(ti), where ti is the frame number of the output from the previous cascade

to use as the first frame in the iterative warping process.

3.5.2 Experiments

Architecture and comparison to DC-CNN The ME-CNN architecture is depicted in

Figure 3.2. DC-CNN is trained with a data-sharing width nd = 5 and feature map size of

nf = 96, giving a total of 3.9M parameters in the full network. Our proposed model uses

nf = 64 and introduces an additional motion estimation branch bringing the total network to

3.8M parameters. Like DC-CNN, ME-CNN uses residual connections between cascades.

The total loss function combining all cascades c = {1...N} becomes:

L(x, {m1...mN}, {u1...uN},mgt) =
N∑︂
c

wc(Lr(mc,mgt) + γLf (mgt;uc)), (3.21)

where wi = 2−(N−i) is the cascade-weight parameter. It is important to note that the motion

estimation network produces predictions based on undersampled and intermediate network

reconstructions mc but is trained on warping ground-truth frames, mt
gt.

DC-MAC vs Data Sharing (DS) The two mechanisms for sharing temporal information

in DC-CNN are the convolutional layers and the data sharing mechanism. The proposed ME-

CNN architecture replaces the data sharing mechanism with x-DC-MAC. The cine generated

from data sharing with a depth of 5 frames [93] can be compared against x-DC-MAC output.

Side-by-side in the video of Supplementary Material 1 in Appendix A.1 and here in Figure 3.5,

it is clear that in spite of no deep learning dealiasing taking place, the x-DC-MAC is already

of a much better quality compared to the DS cine. This further explains why our proposed

ME-CNN would outperform that of the DC-CNN, particularly in high acceleration settings.
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Figure 3.5: A comparison of Data Sharing (from DC-CNN) and DC-MAC. The top and
bottom rows show the ED and ES frames respectively. From left to right: Zero-filled
reconstruction at x16 acceleration, Data Sharing with a depth of 5, x-DC-MAC with 60
iterations, Ground Truth. It is clear that the temporal exploitation via the use of motion
estimation is able to better preserve dynamic content of the cine.

Dataset and Data Augmentation In this study, the same dataset from the study in Schlem-

per et al. (2018) is used [93]. This consists of ten 256×256 short-axis cardiac MRI cines acquired

with an SSFP sequence and T = 30 frames. The field of view of the scans was 320 × 320 mm

and the thickness of the slice was 10 mm. In total, 32 coils were used in collecting the data.

Normalising each coil against a body coil image, these coils were combined to generate a single

coil complex-valued image of size 192 × 190 that was subsequently padded to 256 × 256. The

associated single-coil k-space data was also used in order to supplement the data consistency

layers present in our network and baseline. Seven scans are used for training, one for validation

and two for testing. In order to help prevent overfitting and generalise the dealiasing process,

the dataset was split into patches with a width of 32 pixels and retaining the original height of

256 pixels (which ensures that data-consistency can be applied). It was also augmented with

on-the-fly random translations (±50 pixels), random rotations (±45o) and randomly gener-

ated Gaussian-centered variable density undersampling masks. For testing, we generated 1000

undersampling masks per test example resulting in a large augmented test set of 2000 cines.

Hyperparameters and configuration As advised in the study by Qin et al. (2018), we use
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α = 1× 10−3, β = 1× 10−4 [114] and γ = 50.0. We sampled 2 central lines in the k-space.

Training Each model was trained with a learning rate of 1× 10−5 for 4× 104 gradient steps,

and then 1 × 10−6 for 2 × 104 gradient steps. This took 5 days on an NVIDIA Tesla P40

GPU but there are further advancements that will increase training speed in the near future.

He initialisation was used with an Adam optimiser and parameters β1 = 0.9, β2 = 0.999 and

ϵ = 1× 10−8. The model was developed using the TensorFlow v1.8 Python API.

3.5.3 Results

Our model was evaluated using three-fold cross validation. On an initialised model, each cine

took an average of 55 seconds to reconstruct on an NVIDIA Tesla P40 GPU with 24GB of

memory. Table 3.1 shows the PSNR and SSIM statistics when computed across all three folds

of the dataset. Across all three folds, ME-CNN performed better than DC-CNN with respect

to SSIM for 100% of the test cases, and 89% of the time for PSNR. We also investigated the

quality of the x-DC-MAC in the final cascade and found that there were around 27% of cases

where the intermediate DC-MAC reconstruction produced better SSIM and PSNR than DC-

CNN. As a result, given the DC-MAC, it is clear how the ME-CNN performs much better than

DC-CNN. Figures 3.6-3.8 shows examples where ME-CNN have produced a perceptually better

quality reconstruction. There are cases where the PSNR for DC-CNN are greater than that

of ME-CNN. However, upon inspection, the ME-CNN still visually outperforms DC-CNN as is

made clear by possessing a greater SSIM index (see Figure 3.9).

3.5.3.1 Using the motion field for reconstruction

The x-DC-MAC produced in this study was also examined. Using the model trained to recon-

struct x51.2 undersampled cines, we evaluate our test set on much less aggressive undersampling

rates of x9. Whilst the reconstruction outputs from DC-CNN were poor, ME-CNN produced

more robust reconstructions. Furthermore, the x-DC-MAC produced from the final cascade

of ME-CNN produced a quality greater than that of both DC-CNN and ME-CNN. This is
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Figure 3.6: (a) x51.2 undersampled frame (b) Ground truth mid-motion frame (c) Base-
line model. PSNR: 25.9, SSIM: 0.74 (d) Proposed model. PSNR: 27.7, SSIM: 0.80. The
images on the bottom row shown the temporal variation (vertical axis) of the slice given
by the blue dotted line. The cines for the full ground-truth, DC-CNN, ME-CNN and DC-
MAC (from the final cascade of ME-CNN) are found in Supplementary Figures 2a, 2b, 2c
and 2d respectively (see appendix A).

shown in Figure 3.10. The motion field was used to warp each frame to the next frame in the

ground-truth cine sequence, thus generating a new cine upon which motion field quality can

be partially determined. For the x51.2 experiment, the cine produced an average PSNR of

39.5± 1.9 which is comparable to that of the x9 experiment of 39.6± 1.8 which indicates that

whilst the dealiasing part of the network has not generalised well to other undersampling rates,

the motion estimation network has. The generalisability of the motion estimation arguably

helps provide more robustness to the neural network to unseen examples. Indeed, the percep-

tual quality of the reconstructions from ME-CNN outperform that of DC-CNN as shown in

table 3.2. Further experiments are required to see if there exists domain shifts where ME-CNN

doesn’t outperform DC-CNN.

Table 3.1: A comparison of the reconstructions produced by 3 different models, DC-CNN,
DC-MAC and ME-CNN. The DC-MAC is from the final cascade of ME-CNN, ytxMAC(N).
The difference in performance of each method on the same test sample is also recorded
with the mean difference given by the entries starting with a ‘∆’.

Model PSNR SSIM

DC-CNN 24.4± 2.4 0.670± 0.081

DC-MAC 23.0± 1.8 0.628± 0.041

ME-CNN 27.3± 2.5 0.776± 0.054

∆(ME-CNN−DC-CNN) 2.82± 2.34 0.106± 0.079

∆(DC-MAC−DC-CNN) −1.42± 1.77 −0.042± 0.062



3.5. Exploiting Motion for Extremely Accelerated Cine MR Image Reconstruction 45

Figure 3.7: Another example of better quality being produced by ME-CNN compared
to DC-CNN. Clockwise from the top-left image: (a) Undersampled input cine (b) Ground
truth of a mid-motion frame, with the blue dotted line indicating the slice used to show the
temporal variation in the bottom row (c) DC-CNN output. PSNR: 25.21 SSIM: 0.72 (d)
ME-CNN output. PSNR: 26.96 SSIM: 0.79. The ground truth, DC-CNN reconstruction,
ME-CNN and DC-MAC reconstruction cines are found in the MP4 files labelled Supple-
mentary Figures 3a, 3b, 3c and 3d respectively (see appendix A).
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Figure 3.8: Another example of better quality being produced by ME-CNN compared
to DC-CNN. Clockwise from the top-left image: (a) Undersampled input cine (b) Ground
truth of a mid-motion frame, with the blue dotted line indicating the slice used to show the
temporal variation in the bottom row (c) DC-CNN output. PSNR: 22.6 SSIM: 0.57 (d) ME-
CNN output. PSNR: 27.1 SSIM: 0.76. The ground truth, DC-CNN reconstruction, ME-
CNN and DC-MAC reconstruction cines are found in the MP4 files labelled Supplementary
Figures 4a, 4b, 4c and 4d respectively (see appendix A).
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Figure 3.9: An example where DC-CNN outperforms ME-CNN with respect to PSNR
but still produces poor spatiotemporal quality in comparison to ME-CNN as indicated by
the lower SSIM index. Clockwise from the top-left image: (a) Undersampled input cine
(b) Ground truth of a mid-motion frame, with the blue dotted line indicating the slice
used to show the temporal variation in the bottom row (c) DC-CNN output. PSNR: 23.1
SSIM: 0.65 (d) ME-CNN output. PSNR: 23.0 SSIM: 0.67. The ground truth, DC-CNN
reconstruction, ME-CNN and DC-MAC reconstruction cines are found in the MP4 files
labelled Supplementary Figures 5a, 5b, 5c and 5d respectively (see appendix A).
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Table 3.2: Video quality metrics when testing the generalisability of the trained x51.2-
acceleration reconstruction models on x9-accelerated test data.

Model PSNR SSIM

DC-CNN 21.9± 5.3 0.570± 0.190

DC-MAC 34.3± 1.9 0.930± 0.023

ME-CNN 31.5± 1.5 0.874± 0.019

∆(ME-CNN−DC-CNN) 9.57± 5.44 0.305± 0.182

∆(DC-MAC−DC-CNN) 12.44± 5.45 0.361± 0.188

Figure 3.10: (a) Baseline. PSNR: 28.29, SSIM: 0.75 (b) ME-CNN. PSNR: 32.2, SSIM:
0.89 (c) x-DC-MAC. PSNR: 35.2, SSIM: 0.94 (d) Absolute difference between x-DC-MAC
and ground truth with colorbar (cine dynamic range is 1.0). The ground truth image
is found in Figure 3.6. The full ground-truth, x-DC-MAC for the final cascade and the
absolute error cines are found in Supplementary Figures 6a, 6b and 6c respectively (see
appendix A).

3.5.4 Conclusion

A notable remark on future directions of the ME-CNN involves the generation of the DC-MAC

reconstructions. The generation of the DC-MACs used T number of motion field warps. In

theory, you could perform another T iterations to better incorporate temporal information.

Finally, it is worth noting that similar concepts involving motion estimation have been used

for super-resolution applications [76]. With modifications to the x-DC-MAC and y-DC-MAC

production, super-resolution (SR) MRI with ME-SR-CNN remains a possibility.

In conclusion, we observe that for aggressive undersampling rates where the DC-CNN approach

is not able to effectively exploit the full temporal domain, the proposed ME-CNN is able to
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outperform the state-of-the-art approach. The proposed end-to-end trainable model was able

to generate motion field estimations which were used to produce the DC-MACs. The increased

performance of the network is largely due to the DC-MACs which allow the entire temporal axis

to be exploited. We have demonstrated that ME-CNN is a more robust approach to dealiasing

unseen examples of different acceleration rates. For future work, we will explore the use of ME-

CNN for 3D reconstructions. We will also modify the ME-CNN to explore potential real-time

imaging applications.

3.6 Robust Dynamic MRI Reconstruction for

Active Acquisition pipelines

3.6.1 Introduction

Recent works have explored the use of active acquisition of MRI k-space for image reconstruction

with the aim of reducing scan time without compromising or being technically-limited in ob-

tainable image/cine quality [147]. With the advent of the these new acquisition-reconstruction

pipelines, we show that motion-exploiting reconstruction networks can produce reconstructions

that are robust to the pipeline’s choice of undersampling mask.

In a study investigating active acquisition [147], a ResNet-based architecture with similarities to

the DC-CNN [93] is used for reconstruction. Their ‘cResNet’ reconstruction network produces

an 2D static image which is evaluated by a separate network to decide which line to next

acquire to reduce the overall uncertainty in the reconstruction. In this study, we argue that

for dynamic MRI, a better reconstruction network would be the recent ME-CNN (motion-

exploiting convolutional neural network) [141] which exploits the dynamic nature of the data

to harness the entire k-space budget available. Additionally, we study a key component of the

ME-CNN, the DC-MAC (data-consistent motion-augmented-cine).
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3.6.2 Method

The ME-CNN resembles the DC-CNN except that each CNN/cascade contains a motion esti-

mation block. The motion estimation block is used to generate a DC-MAC that is appended

onto the CNN to aid in dealiasing [141].

The DC-MAC can be formulated as a temporally-iterative noiseless data-consistency term:

rt+1 = F−1
[︂
(Dt+1 ◦ yt+1) + ((1−Dt+1) ◦ F(M trt))

]︂
(3.22)

In this case, the matrix M t is the bilinear interpolation operation that warps its subject, rt,

with an optical flow ut which represents the motion from frame t to t + 1. Note, the iterative

algorithm is dependent on the initial frame for reconstruction, r0, which is set to a frame, t′

from the zero-filled reconstruction, ŷt
′
. x̂x(t) is the value of rnT when zero-fill reconstructed

frame ŷt is used as the initial frame r0, where n is an integer. We set n = 2 in this study after

a preliminary investigation with our fully-sampled dataset and the motion-field learned by a

U-Net [114, 74, 68] shows that the DC-MAC is optimised in terms of the SSIM and PSNR. One

possible reason why larger n causes PSNR and SSIM to drastically drop for high acceleration

rates is because a k-space residue builds up in the regions of the k-space that are sampled

less-frequently or not sampled at all.

The previously mentioned study uses the cResNet, a cascading FC-ResNet-based method to

dealias static 2D images [106, 147]. The architecture draws inspiration from the DC-CNN. To

reproduce the cResNet experiment, it would have taken 187M parameters which may not pro-

vide a fair comparison to ME-CNN with only 3.2M parameters. When training with a reduced

parameter model of cResNet (achieved by using fewer filters), the model heavily overfitted to

our dataset. Instead, the DC-CNN was used as its closest model that performed reasonably.

The DC-CNN consists of a series of N -cascades of CNNs. Each CNN contains 5 convolutional

layers, nf = 96, k = 3 with ReLU non-linearity. Each CNN is followed by the application of

data-consistency which ensures that the reconstruction prediction made by the CNN is consis-
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Figure 3.11: Diagram explaining the DC-MAC generation process. Given an optical flow,
ut, vt, that propagates a frame from frame t to t+1, a zero-fill reconstructed frame can be
warped by the flow using bilinear interpolation. The resulting frame can be then made to
be data-consistent with the original k-space data at frame t+1, yt+1. The resulting frame
has now collected the part of the k-space budget for frame t+ 1. This new frame becomes
the new initial frame in this process.

tent with the originally acquired k-space data [93, 141].

3.6.2.1 Training

We train the ME-CNN end-to-end with an L2 loss only on the output reconstruction of the

final cascade in the network and with N = 3 cascades, different to the original design. Addi-

tionally, we train the optical flow output of each cascade, C, against a L2 warp loss, Lf with

hyperparameter γ = 15.0. The final loss function becomes (3.23).
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L(m,mgt) = ||m−mgt||2 + γ

nc∑︂
c

Lf (mgt;uc) (3.23)

3.6.3 Dataset

We use ten short-axis cardiac cines obtained using SSFP acquisition, 320×320mm field-of-view,

10mm slice thickness. 32 channels were obtained and combined using SENSE reconstruction

[16] to generate a single CMR cine. During training, we augment the dataset with a random

undersampling mask, random rotation and translation. The undersampling mask generated

follows a Gaussian distribution, centered in the middle of k-space with anywhere between 3

and 85 lines acquired per frame (uniformly distributed).

3.6.4 Results

We evaluated the models on acceleration rates from ×3 to ×125 and found that ME-CNN on

average performed better than DC-CNN in terms of both PSNR and SSIM as can be seen in

Figure 3.13. In particular, the average difference in performance was higher for the ME-CNN

compared to the DC-CNN. For high acceleration rates, the standard deviation of this difference

was lower than the average at the corresponding acceleration rate. This implies a high statistical

significance for claims that ME-CNN outperforms DC-CNN. An example reconstruction can

be found in Figure 3.12.

For lower acceleration rates, this claim is weaker as the average difference is lower and the stan-

dard deviation of the difference increases. However, it should be noted that for low acceleration

rates, the average difference in performance for the DC-MAC compared with the DC-CNN is

greater than the average difference for the ME-CNN compared with the DC-CNN. The ro-

bustness of the DC-MAC at these low acceleration rates leads to a low standard deviation in

the difference which means that high statistical significance can be found for the claim that

DC-MAC outperforms DC-CNN at these rates.
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Figure 3.12: An example reconstruction with acceleration rate x16. Left-to-right: Zero-
filled reconstruction, DC-CNN output, ME-CNN output, Ground Truth. PSNR, SSIM
respectively for this example: DC-CNN 35.10, 0.93, ME-CNN 36.87, 0.95.

3.6.5 Conclusion

In this study, we present findings that demonstrate the robustness of ME-CNN and the associ-

ated DC-MAC to MRI acquisitions with a random number of acquired lines in comparison to

DC-CNN which closely resembled the cResNet. The DC-MAC is able to act as an intermediate

reconstruction that not only stabilises the output of the ME-CNN but for high undersampling

rates, is able to extract knowledge from the entire k-space budget. The DC-CNN is limited by

its temporal receptive field and learn to stabilise its reconstruction against the random nature

of the undersampling mask. It should be noted that this work was conducted for 2D+t cardiac

imaging. Future work includes extending our method to other anatomy and for 3D+t imaging.

3.7 ME-CRNN: Using CRNNs for unrolled op-

timisation of Motion-based MRI reconstruc-

tion

In the previous section, cine reconstruction was made possible by the optimisation of equation

(3.3) by only intermittently applying the denoising step of equation (3.15). Whilst this produced

competitive results in an extremely accelerated setting, it is suboptimal to skip too many of

these denoising steps. In this section, we study the case in which this denoising is applied at
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Figure 3.13: Results comparing the ME-CNN, DC-MAC and DC-CNN reconstruction
with acceleration rates from ×3 to ×125. Left column: PSNR metric. Right column: SSIM
metric. First row: the average performance for each acceleration rate. Second row: the
average of the difference in the performance metric. Third row: the standard deviation
of the metric. Fourth row: the standard deviation of the difference in the performance
metric. Note the log scale on the x-axis.
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every iteration.

Noting that the denoising term is parameterised by a deep neural network, traditionally N

iterations of this approach would require N(θ + ϕ) parameters where θ and ϕ are the number

of parameters in the denoiser and motion estimator respectively. For more than 5 iterations,

fitting this into typical GPU memory in a time-efficient manner is infeasible mainly due to the

need to also train the motion estimators alongside the denoisers.

In order to simplify the problem, we use a single, trained motion estimator for all iterations.

The input to the dealiasing network includes this evaluated motion estimate which is generated

directly from the undersampled zero-filled reconstruction. This motion estimator network is

trained separately using an optical flow loss and a smoothing term on the motion estimate as

in equation (3.16).

One particular choice for the motion estimator include the state-of-the-art VoxelMorph which

can be extended to the cascading case and for use with undersampled images [122, 148]. How-

ever, instead we use a 3D convolutional autoencoder-like network which may fail to capture

higher resolution motion details. The autoencoder-like network contains 4 downsampling lay-

ers deep with feature maps sizes of 64, 128, 256 and 512 generating a latent space of 262k

neural units as depicted in Figure 3.14. By using this crude motion estimator, we hope to

demonstrate the robustness of motion-based image reconstruction even when motion estimates

are suboptimal. For example, out-of-training-domain cases for particular cardiac views may

generate optical flows with too much or too little displacement. It should be noted that there

exists a rich literature to produce motion estimates of higher quality than this autoencoder-

like network. This offers opportunities for future investigations of motion estimator choice for

the purpose of optimising reconstructions, particularly when the motion estimate is not jointly

trained with the reconstruction [74, 114, 42, 87, 94].

We also evaluate our method using some higher detail motion estimates which are produced

from the ME-CNN network from the previous section [141] that performs 5 iterations of joint

reconstruction-motion-estimation optimisation. We denote these experiments with ‘(HQ MF)’

to indicate that a reconstruction-based motion estimate is used.
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Further to this, to reduce the number of parameters in the model, we re-use the model weights

by utilising an RNN framework [113]. Each RNN cell represents a proximal operation that acts

in favour towards the objective in equation (3.8). The advantages of fewer weights in an RNN

framework includes reduced overfitting and increased training/test-time speed. In addition to

this, if future work were to include a motion update term at each iteration, then the RNN

framework would be essential due to the typically large memory requirements of performing

motion estimation.

We perform the experiment using 10 and 60 iterations for an acceleration rate of x16 with vari-

able density Cartesian undersampling. A set of control (CNTL) experiments are also evaluated

which do not use any motion term in its iterative reconstruction. A summary of the ME-CRNN

is depicted in Figure 3.15.

3.7.1 Dataset: UK BioBank

The UK BioBank (UKBB) consists of data from 500,000 volunteers aged between 40 and 69

with the primary focus on studying adult diseases. The participants were enrolled between 2006

and 2010 with continued monitoring. The dataset includes genetic data in order to explore the

potential link with certain diseases. Alongside this is a wealth of other data such as brain, heart

and full body imaging, biochemical markets, questionnaires and blood samples [69]. At the time

of writing, over 25,000 subjects have had cardiac MR (CMR) scans which includes multiple types

of acquisitions [57]. In particular, multiple slices of long and short axis (views of the heart) cines

are acquired which are extensively used in this thesis. The UKBB is a remarkable achievement

that has helped bridge the gap between theoretical research (particularly computer scientists)

and population impact [105]. Studies involving the UKBB are ongoing with updates to the

acquisition protocols being recommended to increase the quality of the dataset [173, 105].
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Figure 3.14: The autoencoder-like network used to obtain crude motion estimate for the
ME-CRNN study. The dimensions of each layer are shown in the format of width × height
× time × features/channels.
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Figure 3.15: ME-CRNN architecture. The DCMAC step refers to equation (3.14) from
section 3.3. Note: We use the symbol x̃ to represent the auxiliary variable u from section
3.3 to avoid confusion with the horizontal motion variable which is also denoted as u.
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3.7.2 Results

We evaluated various models on cardiac data from [93] and the UK BioBank study with syn-

thetic phases:

1. CRNN [CNTL] - This is a suitable baseline and matches the implementation from the

study in [113] except without bidirectional temporal recurrent units and using 3D layers

instead of 2D

2. ME-CRNN - This is our proposed model which can be appropriately compared with

CRNN as the control.

3. 2D MECRNN - This is a version of ME-CRNN but using 2D layers instead of 3D layers.

There is no bidirectional temporal current unit. The memory gain allowed us to fit 60

iterations instead of just 10, however, the gradients were only applied to the last ten

iterations during backpropagation.

4. 2D BiCRNN [CNTL] - This is the model from [113].

5. ME-BiCRNN - This is a version of the ME-CRNN but using only 2D layers, not 3D, and

using bidirectional recurrent temporal units from the 2D BiCRNN.

6. kt-FOCUSS - This is a classical reconstruction algorithm that exploits sparsity in the x−f

domain of the acquisition. A version that incorporate motion compensation is denoted

with ”ME/MC” that requires a fully sampled reference is also included in these results.

See 4.1.3 for more information.

The results of these studies can be found in tables 3.3 and 3.4. Figures 3.16-3.21 are some

results from the evaluation.

3.7.3 Discussion

The results show a clear edge of ME-CRNN and CRNN over the more traditional approach,

kt-FOCUSS. The training dataset regularised the CNN denoisers providing a distinct advantage
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Figure 3.16: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
models. The bottom row shows the difference with the ground truth. (PSNR, SSIM) for
the reconstructions above: kt-FOCUSS - (32.5, 0.914), CRNN - (34.8, 0.940), ME-CRNN
- (36.8, 0.956).

Figure 3.17: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
models. The bottom row shows the difference with the ground truth. (PSNR, SSIM) for
the reconstructions above: kt-FOCUSS - (29.6, 0.891), CRNN - (28.3, 0.899), ME-CRNN
- (32.6, 0.931).
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Figure 3.18: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
models. The bottom row shows the difference with the ground truth. (PSNR, SSIM) for
the reconstructions above: kt-FOCUSS - (32.3, 0.898), CRNN - (35.9, 0.940), ME-CRNN
- (37.2, 0.954).

Figure 3.19: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
models. The bottom row shows the difference with the ground truth. (PSNR, SSIM) for
the reconstructions above: kt-FOCUSS (ME/MC) - (31.3, 0.920), CRNN - (31.9, 0.921),
ME-CRNN - (32.2, 0.926).
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Figure 3.20: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
models. The bottom row shows the difference with the ground truth. (PSNR, SSIM) for
the reconstructions above: kt-FOCUSS (ME/MC) - (34.1, 0.942), CRNN - (35.9, 0.949),
ME-CRNN - (36.2, 0.956).

Figure 3.21: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
models. The bottom row shows the difference with the ground truth. (PSNR, SSIM) for
the reconstructions above: kt-FOCUSS (ME/MC) - (33.7, 0.930), CRNN - (32.3, 0.913),
ME-CRNN - (35.9, 0.942).
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Table 3.3: Quantitative metrics for the performance of models on the [93] dataset

Model PSNR SSIM ∆PSNR ∆SSIM

CRNN 31.0± 1.6 0.891± 0.021 0.0± 0.0 0.000± 0.000

ME-CRNN 31.4± 1.9 0.897± 0.022 0.4± 0.7 0.006± 0.007

ME-CRNN (HQ MF) 32.1± 1.6 0.907± 0.017 1.1± 0.5 0.015± 0.007

2D ME-CRNN (60its) 27.0± 2.2 0.800± 0.051 −4.0± 1.0 −0.091± 0.031

2D ME-CRNN (60its, HQ MF) 29.0± 1.8 0.849± 0.035 −2.0± 0.7 −0.042± 0.017

2D BiCRNN 30.6± 1.8 0.879± 0.027 −0.4± 0.5 −0.012± 0.007

2D ME-BiCRNN 31.1± 2.3 0.891± 0.037 0.1± 1.0 −0.000± 0.019

2D ME-BiCRNN (HQ MF) 31.9± 2.1 0.902± 0.033 0.9± 0.9 0.011± 0.016

kt-FOCUSS 25.7± 2.0 0.751± 0.051 −5.3± 0.7 −0.140± 0.035

kt-FOCUSS (ME/MC) 27.7± 1.6 0.820± 0.027 −3.3± 0.5 −0.071± 0.011

over kt-FOCUSS.

The control experiment, CRNN, showed a decrease in performance compared with ME-CRNN.

This is possibly attributed to two factors:

1. Poor exploiting of data There is no direct mechanism to exploit data in the temporal

direction in a physical manner [141]

2. Optimisation ME-CRNN contains a physical model to guide to denoising process which

may lead to a more robust optimisation. The incorporation of the crude/imperfect motion

estimate helps better exploit the data available to the optimisation procedure.

3.7.3.1 Out of distribution data

Using the data collected from [93], we show that the ME-CRNN performs better than the CNTL.

However, different hospitals will use different scanner settings which may shift the in vivo data

to an area out of the training distribution. In order to test performance in such scenarios,

the denoisers were also evaluated on some randomly chosen data from the UK BioBank. It



64 Chapter 3. Motion-based Deep Learning MRI reconstruction

Table 3.4: Quantitative metrics for the performance of models on the cardiac cines from
the UK BioBank study

Model PSNR SSIM ∆PSNR ∆SSIM

CRNN 35.4± 1.3 0.954± 0.010 0.0± 0.0 0.000± 0.000

ME-CRNN 36.7± 1.5 0.965± 0.010 1.4± 0.5 0.010± 0.004

ME-CRNN (HQ MF) 37.5± 1.4 0.968± 0.009 2.1± 0.4 0.014± 0.004

2D ME-CRNN (60its) 31.2± 1.6 0.915± 0.023 −4.2± 1.1 −0.039± 0.016

2D ME-CRNN (60its, HQ MF) 33.4± 1.4 0.941± 0.015 −1.9± 0.8 −0.014± 0.008

2D BiCRNN 34.4± 1.5 0.948± 0.012 −1.0± 0.6 −0.006± 0.005

2D ME-BiCRNN 36.5± 1.5 0.964± 0.010 1.2± 0.6 0.010± 0.004

2D ME-BiCRNN (HQ MF) 37.3± 1.4 0.968± 0.009 1.9± 0.6 0.014± 0.004

kt-FOCUSS 32.5± 1.8 0.927± 0.024 −2.9± 1.5 −0.027± 0.020

kt-FOCUSS (ME/MC) 34.3± 1.8 0.945± 0.018 −1.1± 1.4 −0.009± 0.014

should be noted that for the UK BioBank, only magnitude images were available and so we

used synthetically generated phase maps to break any potential k-space symmetry [116] 3.

The expected behaviour is that supervised methods should show a drop in performance relative

to unsupervised methods such as kt-FOCUSS. Whilst this is indeed the case, ME-CRNN still

shows a significant advantage over CRNN. It should be noted that, whilst it appears that kt-

FOCUSS (ME/MC) generally performs comparatively to the CRNN experiment, from Figures

3.19-3.21 it can be observed that the motion-rich region of interest (ROI) shows the significant

motion corruption that generally exists in such algorithms.

3.7.3.2 Going beyond crude motion estimators

The high quality motion field, denoted in the results with ‘HQ MF’, were also used to generate

reconstructions. The high quality motion fields were generated from a 5 cascade ME-CNN (see

section 3.5). We note that whilst the crude motion estimate from a simple autoencoder-like

3Real valued functions contain conjugate symmetry in their Fourier domain. i.e. f ∗ (−x) = f(x).
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network performed a satisfactory reconstruction that were better than the CRNN baseline,

using a higher quality motion estimate resulted in far superior reconstructions, particularly in

terms of PSNR.

3.7.4 Conclusion

By using a single pretrained motion estimator network, we were able to train a version of the

ME-CNN which performs a denoising step after every ‘DCMAC’ step which involves a motion

warp followed by data consistency. We also used a CRNN architecture to help alleviate the

memory constraints of these large networks whilst also providing higher fidelity results [113].

Our experiments verified the use of motion in image reconstruction and show that using a single

crude motion estimate is sufficient to provide reconstruction advantages.

For future work, it is necessary to train the motion estimator jointly with the ME-CRNN

which was not investigated in this section. Furthermore, ways to extend the single motion

estimator to a motion estimator within each recurrent unit should be explored in hope of

achieving stable end-to-end training without gradient explosions and other potential training

optimisation instabilities.



Chapter 4

Improving the ME-CNN

In this chapter, we build upon the work on motion-based MRI reconstruction from

the previous chapter. In the first section, we focus on architectural improvements

that are able to generate more refined motion estimates and better intermediate re-

constructions that subsequently lead to high fidelty reconstructions. We compare this

improved network, the ME-CNNv2, to various state-of-the-art reconstruction meth-

ods and find significant improvements in the case of aggressive acceleration rates. In

the second section, we introduce a possible use case of abundant segmentation data

from the UK BioBank study to aid in the reconstruction process. We find that the

use of segmentation data is able to better regularise the motion estimator in the pro-

posed motion-based reconstruction network. This ultimately leads to higher fidelity

reconstructions.

66
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4.1 ME-CNNv2

In this chapter, we introduce an improved version of the network from Chapter 3 called ME-

CNNv2. The network from section 3.5 was reimplemented from TensorFlow 1.8 to TensorFlow

2.2 which resulted in improvements in memory efficiency and training time. This improvement

allowed us to conduct studies into an enhanced architectural design of our proposed network.

In particular, it allowed us to increase the Ndcmac iterations used in the network. The proposed

architecture follows the decomposition of section (3.3) more closely by incorporating a number

of changes:

1. Larger number of unrolled iterations In the original unrolled optimisation in section 3.3,

an iteration consisted of a DCMAC step followed by a denoising step. In the ME-CNN

implementation in section 3.5, the denoiser sees the output of the DCMAC step. However,

it also sees other outputs generated by repeatedly applying the DCMAC step (without

any intermediate denoising). The denoiser sees outputs with Nydcmac = {1...30} number

of DCMAC steps which are referred to as y-DCMACs. It also receives the output from

applying the DCMAC step Nxdcmac = 60 times by with the original k-space acquisition as

input. In ME-CNNv2, we remove the latter as an input to the denoiser. Furthermore,

we remove the y-DCMACs and replace them with a single cine generated by applying the

DCMAC step K times to the output of the previous cascade.

We performed a grid search for the possible values of K at each cascade, c = {1...Nc} with

the number of cascades Nc = 3. We denote this value at each cascade as Kc. We found

that Kc = 60∀c ∈ {1...Nc} gave the best reconstructions when setting identical weight

initialisation and using a deterministic GPU setting which resulted in our contribution to

a popular determinism-in-TensorFlow repository [135, 133]. This value of Kc = 60 was not

possible with our previous implementation in TensorFlow 1.8. It should also be noted that

this TensorFlow update allowed us to validate on values as large as Kc = 360, something

which was not possible with the original ME-CNN implementation.

2. Better Motion Estimator Network Memory efficiency allowed us to increase the number
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of feature maps in the downsampled U-net from 16 to 64 (see Figure 3.3). This allows

for a higher detail motion estimate to be generated, improving the training stability and

reconstruction fidelity at test time.

3. More motion regularisation We were able to add more motion terms to our loss function.

In particular, we were able to include a loss on the optical flow warp from a frame to the

ED and ES frames as well as a loss on the consecutive warp of a frame through the entire

cine cycle in order to mitigate motion blurring artefacts in the image reconstruction.

4. Intermediate losses We were able to add weighted losses on the intermediate reconstructions

from each cascade which helped guide the unrolled optimisation and particularly helped

the motion estimators. In our previous implementation, adding these intermediate losses

led to memory issues which meant other parts of the network had to be compromised.

4.1.1 MECNNv2 Loss Function

The MECNNv2 loss function can be decomposed into reconstruction and motion losses as

shown in (4.1). With our notation, our motion field estimator, MP
i , describes the warping of

the frame i to a frame implied by the choice of P such that P ∈ {f, ED,ES}. If P = f , it

warps frame i to the next sequential frame, i+ 1. This is the main choice of p is the only type

of warping used in forward inference. If P = ED, it warps i to the ED frame. If P = ES, it

warps i to the ES frame. These latter two options are used for generalisation of the motion

estimator but not required at forward inference. The ES and ED frames are chosen because

they are the two extremes of the different cardiac phases. This allows us to better account for

the full range of cardiac motion that might occur.

L({m1...mNc}, {MED
1 ...MED

Nc
}, {MES

1 ...MES
Nc
}, {M f

1 ...M
f
Nc
};mgt) =

recon loss + main motion loss + additional motion generalisation losses =

Nc∑︂
k

[︂
Lrecon(mk,mgt) + Lf({M f

k,1...M
f
k,T},mgt) + Lg,k

]︂ (4.1)
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The first part of the loss function is the weighted reconstruction loss:

Lrecon(mk,mgt) = 2k−Nc ||mk −mgt||22 (4.2)

The second and most important part of the loss function involves warping each frame to the next

frame immediately after itself along with spatial and temporal regularisation and additional

regularisation term Lrf :

Lf({M f
1 ...M

f
T},mgt) =

∑︂
i

[︂
λ||M f

i m
i
gt−mi+1

gt ||22 + c5||∇2M f
i ||22

]︂
+ c6

∑︂
t

||∇2
tM

f ||22 +Lrf ,

(4.3)

The term Lrf involves using the predicted transformation from frame i to i+1 (forward mode)

to estimate the transformation from frame i+1 to i (reverse mode), without any further learned

computation. This helps to ensure that the forward transformation used generates frames that

can be reverted to their original state:

Lrf({M f
1 ...M

f
T},mgt) =

∑︂
i

[︂
λ||Inv(M f

i )m
i+1
gt −mi

gt||22
]︂

(4.4)

It should be noted that Inv(M) is a pseudo-inverse motion field which reverses the warp caused

by M . This can be implemented as obtaining the individual horizontal and vertical velocity

components that composeM , and individually warping them by the motion fieldM (i.e. itself).

The negative of each individual component is then equal to the individual components of the

pseudo-inverse.

4.1.1.1 Additional motion regularisation term, Lg,k

The third and final part of the loss function is composed of a series of additional motion loss

terms that aid with generalisation of the motion estimator.
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Lg,k =
(︂ ∑︂

P∈{ED,ES}

LP({MP
k,1...M

P
k,T},mgt)

)︂
+ Ls({M s

k,1...M
s
k,T},mgt) (4.5)

The first term in Lg,k is a frame-to-ED loss function. This is shown in equation (4.6) and can

be seen to encompass an optical flow term, spatial regularisation term and an ED-to-frame

‘reverse’ optical flow loss that ensures consistent optical flow fields are generated.

LED({MED
1 ...MED

T },mgt) =
∑︂
i

[︂
c1||MED

i mi
gt −mED

gt ||22 + c2||∇2MED
i ||22

]︂
+ c3

∑︂
t

||∇2
tM

ED||22 + LrED,

(4.6)

LrED({MED
1 ...MED

T },mgt) =
∑︂
i

[︂
c1||Inv(MED

i )mED
gt −mi

gt||22
]︂

(4.7)

The second term within the summation in Lg,k is identical except uses the ES frame instead of

the ED frame. The final part of Lg,k is a term which warps the first frame of the cine to each of

the other frames in the cine. This helps reduce drifting and blurring artefacts that may occur

with optical flow in highly accelerated acquisitions and in particular in the DC-MAC set-up.

Likewise, this is followed by a loss which warps the last frame of the cine to every other frame

using the inverse of estimate motion field.

Ls({M f
1 ...M

f
T},mgt) =

∑︂
i

c4||M f
i ...M

f
0m

0
gt −mi

gt||22 + Lrs, (4.8)

Lrs({M f
1 ...M

f
T},mgt) =

∑︂
i

c4||Inv(M f
i )...Inv(M

f )T−1m
T
gt −mi

gt||22, (4.9)

The hyperparameters are chosen to be c1 = c4 = 0.1λ, c2 = 5e2c1, c3 = 5e3c1, c5 = 5e2λ,
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c6 = 5e3λ, λ = 50.0.

4.1.2 Data

Along with the data from section 3.5 and the UK BioBank cardiac data, in this section, we

also include an evaluation on a fetal cardiac dataset. This consists of 16 152× 400 multi-slice

volume cines, each with T = 96 frames, collected using 25 coils. These coils were linearly

combined using the emulated single-coil (ESC) method to generate an estimate for a single-coil

acquisition [175].

4.1.3 Experiments

We compare our proposal against some other suitable reconstruction candidates. We also use a

motion compensated reconstruction algorithm known as kt-FOCUSS (ME/MC) which requires

fully-sampled references. This allows for a better understanding of the strengths and limitations

of our proposal in certain scenarios.

4.1.3.1 Non-denoised MECNN

As a demonstration of the capabilities of motion-based reconstruction, we choose to use the

MECNNv2 but without the denoising CNN in each cascade. The motion estimator within

each cascade sees the output of the previous cascade to better improve the motion estimate.

However, the reconstruction output generated by each cascade is simply the x-DCMAC from

section 3.5 where the DCMAC step is performed for 60 iterations but using the motion estimate

of the current cascade.

4.1.3.2 Variational Network

The variational network is a learnable gradient descent based approach for MRI reconstruc-

tion. The optimisation of the reconstruction from section 3.1 takes places via gradient descent
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but with a regularisation term inspired by the Field-of-Experts model [29]. This Field-of-

Experts consists of learnable convolutional kernels (CNNs) and trainable activation functions

(a weighted sum of Gaussians). The resulting optimisation resembles the following descent:

mi+1 = mi −
Nc∑︂
j=1

(Kj
i )

TΦj
i (K

j
imi)− λiE

∗(Emi − y), (4.10)

where Ki
j are the convolutional kernels, λi is the step size and Φj

i is the trainable activation

function.

4.1.3.3 kt-FOCUSS

In kt-FOCUSS, the aim is to exploit sparsity in the x-f domain of the underlying cine, m. We

note that the notation for variable m is in the x-t domain. In the x-f domain, we denote our

cine as ρ instead. The acquired k-space measurements in the k-t domain, y, is thus represented

as:

y = Fρ, (4.11)

where the Fourier transform operates in the temporal domain also. Here, we provide some detail

into kt-FOCUSS in order to demonstrate how a motion-based implementation of kt-FOCUSS

works and thus better understand its limitations.

A typical solution for finding ρ is the minimum norm but this may imply too strong a constraint

on the underlying baseline signal ρ̄ such that ρ = ρ̄+∆ρ, where ∆ρ is the residual signal. This

may lead to energy smoothing and does not sparsify the solution for the underlying signal

[35]. Instead, an L1-norm is used in combination with a weighting matrix, W , to appropriately

sparsify ∆ρ changing the optimisation problem:

min ||∆ρ||2, s.t.||y −FW∆ρ||2 ≤ ϵ, (4.12)
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where ϵ is the desired precision of the reconstruction. Using Lagrange multipliers, the con-

strained iterative solution can be found to be:

ρi = ρ̄+ θnFH(FθnFH + λI)−1(y −F ρ̄), (4.13)

where θn = WnW
H
n (with Wn updated according to equation (4.14)) and λ is the Lagrange

multiplier.

Wn =

⎛⎜⎜⎜⎜⎜⎝
|ρn−1(1)|p · · · 0

...
. . .

...

0 · · · |ρn−1(N)|p

⎞⎟⎟⎟⎟⎟⎠ , 1/2 ≤ p ≤ 1 (4.14)

In our experiments W is initialised in two different ways:

1. Temporal Average The data from all frames is combined to provide a better estimate of

any particular frame. This is referred to as simply ‘kt-FOCUSS’ in our studies

2. Motion Compensation Using a fully sampled reference, a block matching algorithm is used

to estimate a dense motion field that is used to relocate pixels in the fully sampled reference

to any particular frame, creating a motion compensated frame [42]. The block matching

algorithm requires an estimate of the target frame in which the above kt-FOCUSS (with

temporal average) is used. The motion compensated frames are used in initialisation.

This is referred to as ‘kt-FOCUSS (ME/MC)’ in our studies to denote motion estimation

followed by motion compensation ending with kt-FOCUSS.

It should be noted that while kt-FOCUSS (ME/MC) provides an initialisation that provides

very enhanced reconstructions, the requirement of fully-sampled reference frames imposes a

limit to the possible acceleration rate which is not desirable. Furthermore, fully-sampled frames

may not be easily acquired in certain clinical scenarios.
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4.1.3.4 ME-CNN

This is the original ME-CNN implementation from section 3.5. The network is trained with the

architectural and loss function updates as described in the MECNNv2 improvements. However,

the DCMAC structure is slightly different. Each cascade receives an x-DCMAC of 60 iterations

(in which the initial input is the zero filled reconstruction). Additionally, it receives 30 y-

DCMACs varying in the number of DCMAC steps applied from 1 to 30, noting that the initial

input is the output of the previous cascade. In this interpretation, the network sees all these

varying iteration numbers and can choose the iterations which optimise the end reconstruction

the best. However, the disadvantage compared with the MECNNv2 is that the maximum

number of DCMAC steps ever used on the previous cascade is 30 compared to the MECNNv2

which uses 60.

4.1.3.5 DC-CNN

The DC-CNN here is the same as described in 3.5.

4.1.4 Results

We divide our results into three distinct parts in order to better understand the strengths and

limitations of our proposed method:

1. Preliminary Investigation - The benefit of the components included in the ME-CNNv2 is

studied against the ME-CNN and the ME-CNN without the denoising component. This

serves as a sanity check.

2. Varying acceleration rates - We vary the acceleration rate from x2 to x51.2 in order to see

if the proposed method fails to perform at certain undersampling factors

3. Full comparison - Here we compare the MECNNv2 against ME-CNN, variational network

(VN), DC-CNN, kt-FOCUSS and kt-FOCUSS (ME/MC) including another dataset beyond

the domain of the training dataset.
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Table 4.1: Table of results for 3 cascade networks on x16 accelerated acquisitions. NB/ None
of the networks are retrained on the UK BioBank Data and thus contain several out-of-training-
domain examples.

Model PSNR SSIM ∆PSNR ∆SSIM

Our Data

DCCNN 30.4± 2.4 0.890± 0.028 0.0± 0.0 0.000± 0.000

MECNN (no denoiser) 30.8± 2.2 0.885± 0.036 0.4± 1.6 −0.006± 0.031

kt-FOCUSS 30.5± 2.4 0.884± 0.036 0.1± 1.6 −0.006± 0.030

MECNN 31.1± 2.9 0.873± 0.050 0.7± 2.0 −0.017± 0.043

MECNN V2 32.2± 2.0 0.900± 0.029 1.8± 1.3 0.010± 0.023

BioBank

DCCNN 32.3± 1.5 0.896± 0.013 0.0± 0.0 0.000± 0.000

MECNN (no denoiser) 32.7± 1.5 0.904± 0.017 0.4± 1.4 0.008± 0.015

kt-FOCUSS 37.2± 1.9 0.955± 0.015 4.9± 2.0 0.059± 0.017

MECNN 34.2± 2.5 0.921± 0.031 1.9± 2.4 0.024± 0.029

MECNN V2 35.1± 1.3 0.932± 0.011 2.8± 1.3 0.035± 0.012

4.1.4.1 Preliminary Investigation

In our preliminary investigation, we investigated 3-cascade models as a sanity check to under-

stand the benefit of the individual components of the ME-CNNv2. For a fair comparison, we

incorporated the motion network, motion loss/regularisation and intermediate loss changes in

ME-CNNv2 into ME-CNN but not the changes in the DC-MACs seen by the denoiser block.

We also investigated a version of ME-CNNv2 which was trained without any denoisers. Instead,

only the in-cascade motion estimators were trained. At every cascade, the motion estimate is

derived from the DCMAC applied to the output of the previous cascade. In the case of the

first cascade, the DCMAC is applied to the originally acquired k-space data (equivalent to

x-DCMAC in section 3.5). The ‘refined’ motion estimate from the final cascade is then used

to generate an x-DCMAC which is used as the reconstruction output. The results are shown

in Table 4.1 and Figures 4.1-4.7.
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Figure 4.1: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. The bottom row shows the difference with the ground truth. (PSNR,
SSIM) for the reconstructions above: DC-CNN - (36.4, 0.939), ME-CNN - (35.8, 0.935),
ME-CNNv2 - (37.4, 0.957).

Figure 4.2: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. The bottom row shows the difference with the ground truth. (PSNR,
SSIM) for the reconstructions above: DC-CNN - (34.8, 0.928), ME-CNN - (31.8, 0.869),
ME-CNNv2 - (36.4, 0.947).
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Figure 4.3: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. The bottom row shows the difference with the ground truth. (PSNR,
SSIM) for the reconstructions above: DC-CNN - (33.7, 0.938), ME-CNN - (33.7, 0.923),
ME-CNNv2 - (35.5, 0.957).

Figure 4.4: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. The bottom row shows the difference with the ground truth. (PSNR,
SSIM) for the reconstructions above: DC-CNN - (32.9, 0.929), ME-CNN - (33.6, 0.931),
ME-CNNv2 - (34.2, 0.944).
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Figure 4.5: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. In this example, the advantage of MECNNv2 over DC-CNN is less
pronounced. The bottom row shows the difference with the ground truth. (PSNR, SSIM)
for the reconstructions above: DC-CNN - (36.6, 0.954), ME-CNN - (35.6, 0.943), ME-
CNNv2 - (37.1, 0.960).

Figure 4.6: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. The bottom row shows the difference with the ground truth. (PSNR,
SSIM) for the reconstructions above: DC-CNN - (34.9, 0.928), ME-CNN - (34.2, 0.903),
ME-CNNv2 - (36.8, 0.954).



4.1. ME-CNNv2 79

Figure 4.7: Comparison of the reconstruction of a x16 cardiac cine acquisition by various
3 cascade models. The bottom row shows the difference with the ground truth. (PSNR,
SSIM) for the reconstructions above: DC-CNN - (27.5, 0.877), ME-CNN - (28.6, 0.889),
ME-CNNv2 - (29.5, 0.905).

4.1.4.2 Varying acceleration rates

We investigate our the performance benefit of ME-CNNv2 changes compared to DC-CNN. The

results of this are shown in Figure 4.8 and Figures 4.9-4.12.

4.1.4.3 Full comparison

In section, we compare against kt-FOCUSS (ME/MC) and variational network and introduce

another dataset which are noisy, fetal images retrospectively undersampled, very different from

the training domain. We also extend the number of cascades in our networks from 3 to 5 to

show that this results improved performance when compared to kt-FOCUSS. The results of

this are shown in Table 4.2 and Figures 4.13-4.16.
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Figure 4.8: Results for a 3 cascade network on various acceleration rates. Note: Acceler-
ate rate on the x-axis is plotted as the fraction of the k-space sampled.
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Figure 4.9: Comparison of the reconstruction of a x24 cardiac cine acquisition by two
different reconstruction models. The bottom row shows the difference with the ground
truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (21.4, 0.660), ME-CNNv2
- (28.1, 0.844).

Figure 4.10: Comparison of the reconstruction of a x28 cardiac cine acquisition by two
different reconstruction models. The bottom row shows the difference with the ground
truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (18.8, 0.546), ME-CNNv2
- (26.2, 0.798).
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Figure 4.11: Comparison of the reconstruction of a x16 cardiac cine acquisition by two
different reconstruction models. The bottom row shows the difference with the ground
truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (27.5, 0.761), ME-CNNv2
- (32.8, 0.897). These reconstructions are from the same subject and sampling trajectory
as those in Figures 4.14.
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Figure 4.12: Comparison of the reconstruction of a x8 cardiac cine acquisition by two
different reconstruction models. The bottom row shows the difference with the ground
truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (34.4, 0.929), ME-CNNv2
- (38.1, 0.963).

Figure 4.13: Comparison of the reconstruction of a x16 cardiac cine acquisition by two
different reconstruction models with 5 cascades. The bottom row shows the difference with
the ground truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (33.7, 0.938),
ME-CNNv2 - (35.5, 0.957).
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Figure 4.14: Comparison of the reconstruction of a x16 cardiac cine acquisition by two
different reconstruction models with 5 cascades. The bottom row shows the difference with
the ground truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (35.4, 0.933),
ME-CNNv2 - (37.0, 0.953).

Figure 4.15: Comparison of the reconstruction of a x16 cardiac cine acquisition by two
different reconstruction models with 5 cascades. The bottom row shows the difference with
the ground truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (33.1, 0.940),
ME-CNNv2 - (35.7, 0.962).
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Figure 4.16: Comparison of the reconstruction of a x16 cardiac cine acquisition by two
different reconstruction models with 5 cascades. The bottom row shows the difference with
the ground truth. (PSNR, SSIM) for the reconstructions above: DC-CNN - (36.7, 0.946),
ME-CNNv2 - (37.8, 0.958).

4.1.5 Discussion

4.1.5.1 Preliminary Investigation

The preliminary investigation shows that the ME-CNN without the CNN denoiser performs

comparably to the DC-CNN (with denoisers). This highlights the potential power of motion

exploitation in image reconstruction.

The L2 loss function used in this study is closely related to the PSNR metric used in evaluating

the performance of these networks. Whilst the ME-CNN with and without the denoiser boast

gains in PSNR compared to DC-CNN and kt-FOCUSS, the same does not hold true for SSIM

for examples from the same dataset as the training domain. This highlights potential issues of

loss functions for use in MRI reconstruction [140, 201, 83, 117, 125]. Interestingly, the DC-CNN

performs comparably to the kt-FOCUSS method but when we shift the data domain outside of

the training dataset, kt-FOCUSS (which is unsupervised), performs better than all other deep
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Table 4.2: Table of results for 5 cascade networks on x16 accelerated acquisitions. NB/
Use of the BioBank data is not retrained and thus contains several out-of-training-domain
examples. Italics for kt-FOCUSS (ME/MC) indicate that fully sampled reference frames
are required and hence not a fair comparison.

Model PSNR SSIM HFEN VIF

Our Data

VN 32.2± 2.1 0.894± 0.020 0.102± 0.019 0.815± 0.029

MECNNv2 35.8± 2.1 0.952± 0.013 0.065± 0.014 0.899± 0.022

MECNNv1 34.2± 1.8 0.923± 0.025 0.081± 0.021 0.866± 0.026

DC-CNN 34.9± 2.3 0.940± 0.017 0.074± 0.018 0.882± 0.028

kt-FOCUSS 30.5± 2.4 0.884± 0.036 0.130± 0.033 0.779± 0.043

kt-FOCUSS (ME/MC) 33.2± 1.7 0.934± 0.014 0.091± 0.014 0.840± 0.022

- - - - -

BioBank

VN 35.1± 0.9 0.925± 0.008 0.068± 0.009 0.908± 0.016

MECNNv2 39.9± 1.4 0.959± 0.009 0.038± 0.007 0.952± 0.014

MECNNv1 38.0± 1.9 0.956± 0.017 0.048± 0.011 0.929± 0.018

DC-CNN 38.1± 1.6 0.952± 0.010 0.048± 0.009 0.940± 0.015

kt-FOCUSS 37.2± 1.9 0.955± 0.015 0.054± 0.013 0.919± 0.022

kt-FOCUSS (ME/MC) 39.6± 1.7 0.978±0.006 0.040± 0.009 0.942± 0.018

- - - - -

Fetal

VN 32.6± 2.0 0.831± 0.018 0.086± 0.021 0.761± 0.043

MECNNv2 36.5± 2.5 0.932± 0.022 0.048± 0.013 0.869± 0.039

MECNNv1 35.7± 2.5 0.910± 0.025 0.055± 0.015 0.848± 0.042

DC-CNN 34.9± 2.5 0.896± 0.031 0.060± 0.016 0.840± 0.043

kt-FOCUSS 37.4± 2.7 0.925± 0.026 0.047± 0.015 0.881± 0.047

kt-FOCUSS (ME/MC) 38.3±2.9 0.950±0.024 0.042±0.015 0.900±0.049

learning methods which is a common issue with deep learning approaches [81, 134].

Whilst shifting to the BioBank data leads to degradation in performance of deep learning

methods compared to kt-FOCUSS, we find our proposed methods cope much better than the

DC-CNN, with stark differences in PSNR and SSIM.
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4.1.5.2 Varying acceleration rates

We also varied the acceleration rate from x2 to x51.2 (undersample factors from 0.02 to 0.5 as

shown in Figure 4.8). This shows how the benefit of ME-CNNv2 and thus motion exploitation

diminishes with more k-space sampling. This is expected as more temporally neighbouring

data becomes available, the CNN kernel is able to better incorporate the data in the dealiasing

process. Interestingly, even at relatively mild acceleration factors of x4 (0.25 undersampling),

there is still a PSNR and SSIM advantage of MECNNv2 against DC-CNN. At x2 acceleration

(0.5 undersampling), the advantage diminishes to virtually zero.

4.1.5.3 Full comparison

Here, we introduce comparisons against VN and kt-FOCUSS with motion estimation and com-

pensation (ME/MC). We also maximise the number of cascades we can fit into GPU memory for

ME-CNNv2 taking us the 5 cascades. Interestingly, by introducing two extra cascades, this is

more than enough to alleviate the performance degradation (compared to kt-FOCUSS) suffered

upon shifting to the BioBank dataset. In particular, ME-CNNv2 has significantly improved

HFEN, VIF and PSNR and comparable SSIM compared to kt-FOCUSS. This is expected as

in section 3.6, we demonstrated some aspects of robustness of motion based reconstruction in

sections 3.5 and 3.6.

The BioBank dataset are still adult cardiac images and thus closer to the training dataset

domain than the fetal cardiac cines. Whilst the ME-CNNv2 performs worse the kt-FOCUSS

(ME/MC), it still performs drastically better than DC-CNN.

4.1.6 Conclusion

In this study we found that our improvements in the MECNNv2 have led to a robust approach

to MR reconstruction in high acceleration settings with advantages over DC-CNN in shifts

in data domain which may unexpectedly occur in a clinical setting. Further investigations of
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this work should include the use of higher detail motion estimation networks and fitting more

cascades into GPU memory. There is the possibility of extending this to volume acquisitions

with the motion estimation occurring in 3D rather than just in-plane.

4.2 MSE-CNN: Joint Motion Estimation, Seg-

mentation and Reconstruction

The ME-CNN architecture relies on motion estimation in order to complete the DCMAC step

in equation (3.3). The motion estimator network is regularised by a Huber loss which ensures

that motion estimates are smooth and reduces overfitting on noisy examples during the training

process (especially with patch based training).

A previous study [114] explores the advantages of incorporating segmentation information and

motion information into the same pipeline via a shared encoding process. The result was

improved motion estimates as well as segmentations.

The ME-CNN relies on high quality motion estimates in the reconstruction process to ensure

that post-warp cine prediction (the ‘MAC’ part of the DC-MAC) matches the subsequent data

consistency step that is applied. Although section 3.7 shows that crude motion estimates aid in

the reconstruction process, it also shows that higher quality motion estimate lead to drastically

improved reconstructions.

If highly abundant segmentation data could be incorporated into the motion estimation part

of the ME-CNN, it may lead to better motion estimates as in [114]. One could rationalise

that a higher quality motion estimate would lead to better reconstructions thus connecting the

reconstruction pipeline from segmentation to reconstruction.

In this section, we proposed a pipeline in which highly abundant UK BioBank segmentation

date is used to regularise ME-CNN motion estimators based on the ideas of [114] that aim to

improve motion estimation fidelity. We name our proposed approach the Motion-Segmentation

Exploiting Convolution Neural Network (MSE-CNN).
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4.2.1 Previous Work

In [59], GMM segmentations are used in a dictionary learning-based reconstruction that ulti-

mately leads to sharper edges in the reconstruction of brain and cardiac images. The subsequent

segmentations degrade in quality with acceleration rate but far less dramatically than having

separate reconstruction and segmentation pipelines. [127] use neural networks to parameterise

the components in the FISTA decomposition allowing end to end training to perform image

reconstruction on cardiac data:

mk = zk − FCN{CNN(zn−1) + FCN(zn−1 − vk) + FT (DFvk − y)}, (4.15)

where FCN is a fully connected network, vk is a linear combination ofmk−1 andmk−2 and zn−1 is

the previous output from this same equation but without increment to k (instead increment n)

and thus no update to the term vk. They then add a U-net segmentor to the end of the pipeline

and jointly optimise the segmentation and reconstruction to produce their proposed ‘FR-Net’.

This was evaluated on cardiac data with segmentations of the myocardium. Please see [127]

for more details. [144] take a slightly different approach that integrates the segmentation

representation into the reconstruction pipeline. In their study, a cascade of U-nets is used for

reconstruction and at each cascade, the segmentor is the decoder of a U-net that reuses the

encoder output of the reconstruction U-net. By having the segmentation and reconstruction

share the same U-net encoder, trained jointly end-to-end, there is a boost in reconstruction

and segmentation performance demonstrated on 3T T1 MRI brain data. It should be noted

that the above approaches are either designed for single images or do not have a mechanism to

exploit the temporal redundancy in cine MRI such as in ME-CNN.

4.2.2 Experimental Method

Inspired by [114], incorporating segmentation information into the motion estimation stage of

the ME-CNN allows for a more detailed motion estimate for the subsequent reconstruction
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stage of the ME-CNN. We do not require segmentations to be available to perform test-time

reconstruction since segmentations are usually performed after post-processing. Instead, seg-

mentation data is only used at training time to regularise the motion estimator both in terms

of architectural design and in the optimisation landscape (via the addition of particular losses).

The two ways segmentations are used to regularise the motion estimator are as follows:

1. Motion-Segmentation Encoded U-net with added segmentation loss - By encoding segmen-

tation information into the motion estimator, a better, more semantic representation can

be learned that will result in both better motion estimates and segmentations as shown in

[114].

2. Dice loss for non-ED/non-ES segmentation predictions warped to ES/ED frames where

radiologist/clinical segmentation is known - This ensures that the motion field learned via

the optical flow loss is consistent with warping predicted segmentations from one frame

to another and thus provide a direct way in which segmentation information is used to

regularise the motion estimator.

Producing segmentations as well as a motion estimate requires a lot of memory and is compu-

tationally intensive to train. In order to alleviate this issue, we use a single motion estimator

and segmentation network that is shared by all cascades in the network. The input to the mo-

tion estimator-segmentation encoder is the undersampled/zero-filled reconstruction. We train

our network end-to-end with the ME-CNNv2 loss function with two additional losses for the

segmentations and warped segmentations:

LMSE-CNN = LME-CNNv2(mgt, y;λ) + α1Dice(sgt, spred)

+ α2(Dice(spred,ED,MED(spred))

+ α2Dice(spred,ES,MES(spred))),

(4.16)

where λ is the motion hyperparameter of the MECNNv2, s are segmentations, M represents a

warp with the learned motion estimate to the ED (or ES) frame and α1 and α2 are hyperpa-
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Figure 4.17: Architecture of MSE-CNN.

rameters. We chose α1 = 1.0 and α2 = 0.2.

We summarise the formulation of our method in Figure 4.17. It should be noted that the

control experiment is identical except there is no segmentation part to the network and hence

no segmentation or warped segmentation loss.

4.2.3 Results

The control experiment is used to determine whether the proposed method to introduce seg-

mentation into the reconstruction pipeline creates enhanced reconstruction. The results of

this comparison are shown in table 4.3. Some example reconstructions are shown in Figures

4.18-4.22.

Although the segmentation quality is not the aim of this study, we report obtained Dice scores.
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Table 4.3: Results of MSE-CNN and a suitable control experiment on cardiac image and
segmentation data from the UK BioBank study with synthetic phases to break k-space
symmetry. DSC is the Dice score. Difference in metrics between the two methods is
showed by the ∆.

Experiment PSNR SSIM HFEN VIF RNMSE

CTNL 30.67± 0.79 0.918± 0.009 0.0502± 0.0052 0.825± 0.019 0.0756± 0.0089

MSE-CNN 31.28± 0.77 0.929± 0.009 0.0460± 0.0049 0.842± 0.018 0.0704± 0.0083

∆ 0.61± 0.11 0.011± 0.002 −0.0042± 0.0009 0.017± 0.003 −0.0051± 0.0012

The Dice score for the ED frame was found to be 0.787±0.036 and for the ES frame 0.741±0.046.

Some example segmentations are also shown in this section.

4.2.4 Discussion

The quantitative results shown in table 4.3 clearly shown that the proposed method enhanced

reconstruction quality across the entire cine with a signed Wilcoxon rank test p≪ 0.01 on the

ROI across all metrics (for both rejecting null hypothesis that the methods are the same and

accepting alternative hypothesis of enhanced performance). The results also show the difference

images which highlight the MSE-CNN enhancement more clearly. In particular, the MSE-CNN

generally produces a sharper image handling smaller details more appropriately.

4.2.5 Conclusion

In conclusion, we have demonstrated the advantage of segmentations in training motion-based

reconstruction networks known as ME-CNNs. Whilst the MSE-CNN was shown to perform

better than the variant of ME-CNN used as a control experiment, future work should in-

clude extending the motion estimation/segmentation to be unique to each cascade to ensure

an optimal reconstruction is generated. Currently, the encoder never receives intermediate

reconstructions from individual cascades which limits the possible optimisation of the motion
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Figure 4.18: Comparison of the reconstruction of a x16 cardiac cine acquisition by the
two different reconstruction models. The first and third row are the reconstructed images
and enlarged central crop of said images. The second and fourth rows are the difference
images with the row above. The last row are the segmentations generated by the MSE-
CNN. (PSNR, SSIM) for the reconstructions above: CNTL - (36.3, 0.949), MSE-CNN -
(37.0, 0.956). The Dice score of the (ED, ES) segmentations from the MSE-CNN were
(0.843, 0.727).
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Figure 4.19: Comparison of the reconstruction of a x16 cardiac cine acquisition by the
two different reconstruction models. The first and third row are the reconstructed images
and enlarged central crop of said images. The second and fourth rows are the difference
images with the row above. The last row are the segmentations generated by the MSE-
CNN. (PSNR, SSIM) for the reconstructions above: CNTL - (36.8, 0.950), MSE-CNN -
(37.3, 0.958). The Dice score of the (ED, ES) segmentations from the MSE-CNN were
(0.803, 0.769).
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Figure 4.20: Comparison of the reconstruction of a x16 cardiac cine acquisition by the
two different reconstruction models. The first and third row are the reconstructed images
and enlarged central crop of said images. The second and fourth rows are the difference
images with the row above. The last row are the segmentations generated by the MSE-
CNN. (PSNR, SSIM) for the reconstructions above: CNTL - (34.6, 0.936), MSE-CNN -
(35.0, 0.945). The Dice score of the (ED, ES) segmentations from the MSE-CNN were
(0.717, 0.697).
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Figure 4.21: Comparison of the reconstruction of a x16 cardiac cine acquisition by the
two different reconstruction models. The first and third row are the reconstructed images
and enlarged central crop of said images. The second and fourth rows are the difference
images with the row above. The last row are the segmentations generated by the MSE-
CNN. (PSNR, SSIM) for the reconstructions above: CNTL - (36.5, 0.946), MSE-CNN -
(36.9, 0.956). The Dice score of the (ED, ES) segmentations from the MSE-CNN were
(0.827, 0.830).
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Figure 4.22: Comparison of the reconstruction of a x16 cardiac cine acquisition by the
two different reconstruction models. The first and third row are the reconstructed images
and enlarged central crop of said images. The second and fourth rows are the difference
images with the row above. The last row are the segmentations generated by the MSE-
CNN. (PSNR, SSIM) for the reconstructions above: CNTL - (36.1, 0.934), MSE-CNN -
(36.5, 0.944). The Dice score of the (ED, ES) segmentations from the MSE-CNN were
(0.874, 0.765).
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estimate. Furthermore, in order to further highlight the advantage of MSE-CNN, the recon-

structions should be investigated at more aggressive acceleration rates in order to the highlight

the regularisation benefit of segmentations. Extending this work to training directly on 3D

volume cines is also of interest (rather than 2D slices). In particular, in-plane and out-of-plane

motion is likely to be the next biggest contributor to PSNR and SSIM gain for MSE-CNN.

4.3 Summary

In chapters 3 and 4, we demonstrated various ways in which deep learning networks can be

used to exploit motion estimation. This centered around a decomposition of the optimisation

objective in section 3.3 which introduced a motion term. Due to computational requirements of

performing motion estimation in conjunction with reconstruction, a number of simplifications

were introduced in section 3.5. In this section, it was shown that in a highly accelerated

setting, motion exploitation lead to benefits in the reconstruction process in the form of the

ME-CNN. In section 3.7, a version of the ME-CNN that more closely followed the decomposition

from section 3.3 was implemented by incorporating a recurrent framework and using a single,

pretrained crude motion estimator. This was referred to as the ME-CRNN. In Chapter 4, an

upgrade of TensorFlow led to the relaxation of some computational restraints that allowed for

improvements in the ME-CNN leading to the ME-CNNv2. Using this improved network, a

full comparison against state-of-the-art reconstruction algorithms was performed showing the

benefit ME-CNNv2 at a range of accelerated rates from x2 to x51.2. In the last section, section

4.2, the use of segmentation data to improve the ME-CNNv2 motion estimate was investigated

with the motivation to use the improved motion estimate for enhanced reconstruction. The

ME-CNNv2 was modified to share the motion estimator with a segmentation decoder with

additional loss functions. Due to computational resource constraints, the motion estimator and

segmentation network was shared across all reconstruction blocks. This new network, referred

to as the MSE-CNN, performed better reconstructions with segmentation regularisation than

without with x16 accelerated acquisitions. This opens a whole new potential area of research

for future work in deep learning CMR research.
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In conclusion, the benefits of motion estimation in the reconstruction process are clear. How-

ever, further work is needed to expand the approaches introduced in chapters 3 and 4 to volume

data. Additionally, the framework introduced here can be adapted for motion correction and

not just motion exploitation leaving large scope for further exploration.



Chapter 5

Spatial Semantic-Preserving Latent

Space Learning for Accelerated DWI

Diagnostic Report Generation

In light of recent works exploring automated pathological diagnosis, studies have also

shown that medical text reports can be generated with varying levels of efficacy. Brain

diffusion-weighted MRI (DWI) has been used for the diagnosis of ischaemia in which

brain death can follow in immediate hours. It is therefore of the utmost importance to

obtain ischaemic brain diagnosis as soon as possible in a clinical setting. Previous

studies have shown that MRI acquisition can be accelerated using variable-density

Cartesian undersampling methods. In this study, we propose an accelerated DWI

acquisition pipeline for the purpose of generating text reports containing diagnostic

information. The model bypasses the traditional image reconstruction step in an

effort to streamline the diagnostic pipeline. We demonstrate that we can learn a

semantic-preserving latent space for minor as well as extremely undersampled MR

images capable of achieving promising results on a diagnostic report generation task.

This chapter is based on work completely jointly with equal contribution from Aydan

Gasimova and is based on the publication in [159].

100
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5.1 Introduction

Patients that have suffered the symptoms of a stroke have a very short time frame in which

to be effectively treated; therefore, it is imperative that radiologists determine the cause of the

symptoms in order to provide the appropriate treatment. The majority of strokes are caused by

cerebral ischaemia, which can be characterised as reduced blood flow to the brain, causing poor

oxygenation that can lead to permanent brain cell death. Both computed tomography (CT)

and multi-modal magnetic resonance imaging (MRI) are effective in assessing brain ischaemia,

but diffusion-weighted MRI (DWI) is particularly advantageous as it provides highest sensitiv-

ity to early ischaemic lesions. In comparison to CT, typical DWI has a much longer acquisition

time which additionally makes the scans more susceptible to patient motion and subsequent

unwanted imaging artefacts. Furthermore, requiring patients to lay dormant without any mo-

tion for long periods of time may lead to discomfort. A well-explored approach for accelerating

scan-time is through undersampling whereby fewer scanner measurements are taken, violating

the Nyquist-Shannon sampling theorem and thus introducing aliasing artefacts into the recon-

struction of the image. Several studies are focused on the dealiasing of such images, validating

undersampled MRI as an accepted acceleration technique [141, 113, 16, 21, 121, 121, 110, 93].

Assessing the quality of the MR image reconstruction is typically focused on calculating simi-

larity metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index

between the dealiased reconstruction and the fully-sampled image [26]. This does not, however,

guarantee the retention of pathological features necessary for a diagnosis, especially at more ag-

gressive acceleration rates. Therefore, a complimentary way of reviewing extremely accelerated

images is through the use of real-time diagnostic tasks such as segmentation and classification

[116]. In our study, we explore the automated generation of radiological text reports containing

relevant diagnostic and contextual information. The logging of diagnostic reports generated by

qualified radiologists is standard hospital protocol. As a result, datasets for studies involving

automated text report generation can be acquired directly from hospital archives. In contrast,

segmentation and classification tasks require non-standard time-consuming manual annota-

tions. In addition, DWI diagnostic reports typically detail contextual information as well as
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the presence/absence of an acute lesion, such as anatomical location and severity of the lesion,

and being able to auto-generate them will additionally expedite the process of identifying and

documenting acute ischaemia.

To this end we have developed a pipeline that 1) learns an implicit context-preserving manifold

of brain DWIs that captures both spatial and pathological information, 2) enforces a latent

code for the accelerated DWIs that performs in a similar fashion to the fully-sampled images 3)

utilises these accelerated brain DWI image representations to learn to automatically generate

reports using a recurrent neural network. To our knowledge, this is the first demonstration

of deep latent space learning for the retention of semantic feature information required for

accelerated report generation, and the first demonstration of learning to auto-generate reports

from brain DWI images.

5.2 Previous work

Latent space learning of accelerated MRI Previous work has shown the use of deep latent

space learning for performing tasks such as segmentation and reconstruction in the context

accelerated MRI [121, 116]. Accelerated MRI data acquisition is centred around the ability

to reconstruct image data in a typically ill-conditioned inverse regression problem. However,

certain tasks will only require certain parts of information from the sensor space, called ‘k-space’.

For example, approximate motion estimation from cardiac cine MRI can be performed with

acceleration factors as high as 51.2 [141]. The study in [116] shows that cardiac segmentation

can be performed by a single line acquisition in k-space. Inspired by this, we explore the use of

deep latent space learning for generating diagnostically-relevant contextual image embeddings.

Whilst the study in [116] shows that deep latent space learning provides a manifold that can be

robust to different undersampling patterns, they also show that at extreme acceleration rates,

deep latent space learning can outperform conventional approaches.

Radiology report generation Learning to automate report generation for radiological im-

ages has thus far been heavily influenced by image captioning models formulated as an encoder-
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decoder machine translation problem. In image captioning, image representations are extracted

from a pre-trained convolutional neural network (the encoder) and passed as inputs alongside

captions to a sequence-learning decoder by, for instance, mapping the word and image repre-

sentations to the same feature space [66, 70]. Such a framework was used by [80] to predict

structured medical subject heading (MeSH®) annotations for chest X-ray images.

More recently, learning to attend to spatial visual features has been shown to be effective in

image captioning [71] and medical report generation [101, 111, 119, 146]. Using structured

reports in a dual-attention framework, Zhang et al.[101] were able to improve features used

for classifying histopathology images. The co-attention network of Jing et al. [111] is fed

visual as well as semantic features in order to provide high-level semantic information to the

text-generation task. Xue et al.[119] break down the task of report generation into subtasks

of generating one sentence at a time where each succeeding sentence is conditioned on image

features and previous sentences. Yuan et al.[146] also demonstrate the benefit of learning

radiology-related features from an initial classification task and go a step further by learning

features from multi-view 2-D images (chest X-rays) by introducing a cross-view consistency

loss.

The accelerated acquisition of brain DWI has been previously studied in the context of image

reconstruction [91, 97, 96, 107]. However, in our study, we explore its use for automated text

report generation. We demonstrate how the latent space learned by the accelerated reconstruc-

tion network captures both spatial semantic and pathology information required in order to

learn to generate reports.

5.3 Method

Our study accelerates DWI acquisition through aggressive variable-density Cartesian undersam-

pling as has been studied in several previous works such as [141, 116]. In our study, we start

with attempting a zero-fill reconstruction whereby the lines in k-spaces that are not acquired

are filled with zeros. An example of a fully sampled image and a corresponding undersampled,



104 Chapter 5. Accelerated MRI for Diagnostic Report Generation

Figure 5.1: An autoencoder is trained to reconstruct the fully-sampled image through an
L2 loss. The latent space is conditioned to encode pathological information by performing
a classification of ischaemia, trained with a binary cross-entropy loss. The latent space
encoding learned at the bottleneck is used as a training target for the encoding branch
which only sees the accelerated image.

zero-filled image reconstruction is shown in Figure 5.2. For all acceleration rates, we always

sample the two most central lines in k-space whilst the other lines are acquired following a

Gaussian distribution centred at the point of highest energy in k-space. During training, un-

dersampling masks are generated on the fly and images are also augmented with additional

rotations and translations.

5.3.1 Latent space learning

In our approach, we use an autoencoder network that takes as input the original fully-sampled

DWI brain MRI. The purpose of this is to learn a latent space at the bottleneck that contains

spatial and contextual information that may be useful for a text report generator. In particular,

we manipulate the embedding manifold toward one more suitable for text report generation by

introducing an ischaemia-classification loss as a regulariser. This loss can be summarised by

equation (5.1) where an Adam optimiser with learning rate 1.0×10−5, β1 = 0.9 and β2 = 0.999

was used.
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L(x, y) = ||D(E(x))− x||22 − γ(y logC(E(x)) + (1− y) log(1− C(E(x)))), (5.1)

where E, D and C are the encoder, decoder and classifier networks (from figure 1) respectively,

x is our fully-sampled image, y is a binary classification label for ischaemia and γ = 8000. We

can measure the performance of the latent space learnt as a combination of reconstruction error

(in particular of the ischaemia) and of the classification error.

Alongside this, we use a structurally-identical encoding branch to learn a latent space for the

accelerated MRI acquisition. We use the approach of performing a zero-filled reconstruction

which is passed to a series of convolutional layers. These can be used to identify aliasing

artefacts that share information with the unavailable fully-sampled image. In spite of using

a heavily aliased image, the generated feature map will consistent of highly relevant image

features that are akin to the case whereby the fully-sampled image was used instead. The

latent space is trained against the bottleneck of the autoencoder using an L2 loss and another

Adam optimizer with the same optimizer parameters. This is summarised in Figure 5.1 and in

equation (5.2). Note, for each acceleration rate used in our study, a unique encoder is learned

to generate the required latent space. An advantage of deep latent space learning is that we can

train the specific encoder associated with different acceleration rates towards the same manifold

which avoids the need for retraining of the text report generator model.

L(x, xacc) = ||E(x)− xacc||22, (5.2)

where xacc is our accelerated, aliased image and Eacc is our encoding branch for the accelerated

images.

5.3.2 Report generation model

We use a report generation model based on [124] where the report word sequence is modelled

using the Long Short-Term Memory (LSTM)[10], and conditioned on image embeddings at
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Figure 5.2: Left to right: (1) An example of a brain with ischaemia (2) The corresponding
x16 accelerated image is zero-fill reconstructed from k-space using a 2D Fourier Transform.
Note that this image is infected with heavy aliasing artefacts. (3) A projection of the first
two principle components in a PCA analysis of the latent space. Some clustering can be
seen (4) a t-SNE projection of the latent space showing clear clustering.
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Embedding
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Figure 5.3: Clinical report generation model from accelerated image latent space embed-
dings.
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each time step through concatenation at the input to the LSTM. At each time step, the input,

output and forget gates control how much of the previous time steps is propagated through to

the output. For an input embedding sequence {x1, . . . , xn} where xi ∈ RD, the internal hidden

state ht ∈ Rh and memory state mt ∈ Rm are updated as follows:

ht = ft ⊙ ht−1 + it ⊙ tanh(W (hx)xt +W (hm)mt−1)

mt = ot ⊙ tanh(ht)

(5.3)

where xt ∈ RD is the concatenation of the latent space image embedding and word embedding

at time step t, W (hx) and W (hm) are the trainable weight parameters, and it, ot and ft are the

input, output and forget gates respectively. The model architecture is illustrated in Figure 5.3.

We additionally add Dropout layers after image and word embeddings to force the model to

condition on both thus regularising training.

5.4 Experiments

The Data The dataset consists of 1226 3D DWI scans and corresponding radiological reports

of acute stroke patients. All the images and reports were fully anonymised and ethical approval

was granted by Imperial College Joint Regulatory Office. The scans were pre-processed accord-

ing to the steps outlined in [85]: images were resampled into uniform pixel size of 1.6×1.6mm,

and pixel intensities were normalised to zero mean and unit variance. The number of slices per

image varies between 7 and 52, and the slice dimensions are 128×128.

Each report contains between 1 and 2 sentences summarising the presence or absence of the

pathology, a visual description, and its location within the brain. In addition, each exam is

assigned a diagnostic label as part of hospital protocol: 54% were diagnosed ‘no acute infarct’,

46% were diagnosed ‘acute infarct’. The remaining, which made up a total of <1% and included

diagnoses such as ‘unknown’, ‘haematoma’, ‘tumour’, were removed for the purpose of training.

Processing was done on the reports to remove words outside the 99th percentile, exams with
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empty reports were removed, leaving a total of 1104 exams, total vocab length 1021, mean

words per exam 10.8, std. 6.3.

In order to simplify the problem, we created a 2D dataset of acute and non-acute (normal)

slices from these images. For the acute set, we used the brain ischaemia segmentation network

developed by Chen et al.[85] to segment the images labelled with acute ischaemia, thresholded

at 0.8, and selected slices where the total area of ischaemia was >10 pixels. For the normal

set, we sampled slices from the non-acute labelled images according to the same axial plane

distribution as the acute set.

Experimental settings Reports were padded with ‘start’ and ‘end’ tokens to length 19 (mean

+ 1std. + ‘start’ + ‘end’). The word embedding layer maps one-hot encoded word embeddings

into a learnable 256 dimensional space. The LSTM hidden state is also set to dim 256, and the

LSTM units are unrolled up to 19 time steps. We train the model on non-accelerated latent

embeddings and their associated reports by minimising the categorical cross-entropy loss over

the generated words. All models are trained with batch size 128, using Adam optimisation [61],

learning rate=0.0001 for 300 epochs. The language model in total had 1.45M parameters and

the separately trained model that generated the latent embeddings had 126M parameters.

Results Inference was performed by first sampling from the LSTM using a ‘start’ token con-

catenated with the accelerated embeddings, and consequently appending the output word em-

bedding to the input and sampling until an ‘end’ token was reached. The quality of the

generated reports was evaluated by measuring BLEU [22] and ROUGE [23] scores averaged

over all the reports, which are a form of n-gram precision commonly used for evaluating image

captioning as they maintain high correlation with human judgement. We observe that the both

the BLEU and ROUGE scores decrease with increasingly accelerated images, as expected. We

note that there is a significant reduction in performance between the x4 and x8 accelerated

images possibly due to some contextual information not being captured by the latent space.

We also assess the sampled reports qualitatively in Figure 5.4. We observe no major grammat-

ical errors for all accelerations, an no major content errors for lower accelerations with x2 and

x4 correctly identifying the presence/absence of ischaemia as well as the location. Note: the
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Table 5.1: BLEU1,2,3,4-gram and ROUGE1 f1, precision (P) and recall (R) metric com-
parisons on increasingly accelerated image embeddings.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 F1 ROUGE-1 P ROUGE-1 R

Acc.×1 38.12 27.26 20.28 15.59 47.10 52.89 44.96

Acc.×2 34.07 23.31 15.55 11.57 44.00 51.86 40.68

Acc.×4 31.36 19.42 12.29 8.31 41.17 48.09 38.80

Acc.×8 21.32 10.37 5.06 2.55 29.53 32.92 29.52

Acc.×64 21.58 11.11 4.97 2.35 30.39 35.10 29.07

last example shows a text report that was ischaemic but was classified as healthy. This is likely

to have confused the latent code for this example resulting in poor text report generations.

5.5 Extension to 3D volume data

In our study above, we used 2D slices of the k-space acquisition in the model that generate the

latent code. This is a sub-optimal methodology for re-use with a different dataset due require-

ment of a complex segmentation model to identify ischaemic slices for balacing the training

dataset. It should be noted that there are far more ischaemic slices that normal/non-ischaemic.

Instead, we propose using the 3D data directly without a separate slice extraction pipeline,

making the whole process more streamlined. We expand on [159] to generate radiological texts

from 3D pathological volumes without an intermediate data cleaning stage. We 1) Build a la-

tent encoder balanced by the auxiliary tasks of classification and image reconstruction without

accelerated acquisition 2) Tune our encoder through a set of experiments with a validation set

on a report generation task 3) Train our final, tuned model with accelerated acquisitions for

DWI report generation without an intermediate reconstruction phase. The hypothesis of this

study is the same as in the previous section - that using a combination of these auxiliary tasks

will help to better retain contextual information in the resulting latent encoding which will lead

to a subsequent increased performance for accelerated radiological text report generation, just

as in the section above.

Hyperparameter search One goal of our study was to ascertain the balance between our
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Acute: Y True report: restricted diffusion right posterior insula several 
additional foci within parietal lobe keeping multiple small right mca infarcts 

Acc x1: tiny foci restricted diffusion within right parietal lobe right 

Acc x2: acute embolic looking infarcts within right parietal lobe 

Acc x4: acute infarcts within right mca territory bilaterally 
Acc x8: tiny acute cortical infarcts right mca territory involving right frontal 
parietal 
Acc x64: several cortical **unknown** infarcts within right parietal lobe 

Acute: Y True report: cortical restricted diffusion centred left parasagittal front

al parietal region involving **unknown** lobule superior 

Acc x1: cortical restricted diffusion centred left parasagittal parietal region inv

olving posterior 

Acc x2: multiple cortical subcortical acute infarcts centred left corona radiata 

Acc x4: cortical subcortical acute ischaemic changes involving left parietal region 

Acc x8: acute cortical infarct centred left parietal region 

Acc x64: several acute infarction within left mca territory 
 

 

Acute: N True report: no acute infarcts demonstrated 

Acc x1: no acute intracranial abnormality identified intracranial haemorrhage 

Acc x2: no acute intracranial abnormality demonstrated particular no acute infarct 

intra extraaxial haemorrhage 

Acc x4: no acute ischaemic changes 
Acc x8: no acute ischaemic lesion intracranial haemorrhage 

Acc x64: no acute infarction intracranial haemorrhage 

Acute: Y True report: small acute white matter infarct left corona radiata 

Acc x1: small area acute infarct left corona radiata 

Acc x2: small area restricted diffusion within left mca territory infarct 

Acc x4: focal area signal within left corona radiata 
Acc x8: multiple small foci acute ischaemia left gyrus 

Acc x64: area restricted diffusion accompanying flair within left corona radiata su

ggest **unknown** 

Acute: N True report: no acute infarction 

Acc x1: no acute ischaemic lesion intracranial haemorrhage 

Acc x2: no acute infarct 

Acc x4: no acute ischaemic lesion 

Acc x8: small acute infarct centred left parietal region 

Acc x64: no acute ischaemic lesion 

Acute: N True report: modest volume acute right middle cerebral artery territory 
ischaemia noted no evidence haemorrhagic transformation 

Acc x1: no evidence acute infarct 

Acc x2: no acute infarct intra extraaxial haemorrhage 

Acc x4: no acute intracranial haemorrhage demonstrated 
Acc x8: acute infarcts within right mca territory areas days 

Acc x64: focal subcortical restricted diffusion within left parietal lobe keeping a

cute infarct 

 
 

Figure 5.4: Sample brain slices and associated reports generated from non-accelerated
and increasingly accelerated image embeddings. Correctly identified pathology (acute/non-
acute) and spatial contexts are highlighted in blue.
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Table 5.2: Results of hyperparameter search

Model Acc. Precision Recall B-1 B-2 B-3 B-4

Classification Only 0.79 0.85 0.67 21.10 8.73 4.14 0.47

γ = 1e8 0.54 0.50 0.53 12.28 3.02 2.10 0.00

γ = 1e9 0.62 0.58 0.60 18.49 9.02 1.85 0.70

γ = 1e10 0.78 0.82 0.65 20.83 11.82 8.62 7.59

γ = 1e11 0.77 0.76 0.73 18.68 9.88 2.65 1.32

auxiliary tasks for the latent space learning from 3D volumes and thus optimise the parameter

γ. We assess the quality of the latent space by training and then sampling from the report

generation model, and evaluating the predicted reports against the true reports using the BLEU

metric, a modified n-gram precision metric, averaged across samples. The results are shown in

Table 5.2. After evaluating on the validation set, we found that the classification only model

performed best on BLEU-1, however, when γ = 1e10, the model performs better on higher n-

gram BLEU metrics. Higher BLEU metrics on longer n-grams indicates that a more contextual

report is learned (i.e. greater overlap of 2, 3, and 4 sequential words). This is consisted with our

hypothesis that the auxiliary task of reconstruction improves the semantic-preserving ability of

the latent space.

Accelerated DWI report generation With the optimal hyperparameters chosen for the

auxiliary learning task, the ‘accelerated’ encoder was trained to produce the same embeddings

of ‘fully-sampled’ encoder via an L2 loss. The result was that the semantic embeddings were

produced from extremely accelerated acquisitions of pathological brain volumes. We found that

even highly accelerated acquisitions were able to be encoded to representations very close to

that of fully-sampled acquisitions. These embeddings were then used to produce the associated

accelerated radiological text report. The BLEU scores evaluated on the test dataset for each

acceleration rate is shown in Figure 5.6. As expected, higher acceleration rates lead to worse

BLEU scores but it is important to note that even at x8 acceleration, the reports are still of

good quality as shown in Table 5.3.
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Table 5.3: Sample ground truth and generated reports from fully sampled and undersam-
pled 3D brain DWI. Correctly identified concepts are highlighted.

True: ’no’, ’acute’, ’ischaemic’, ’lesion’, ’intracranial’, ’haemorrhage’

No Acc.: ’no’, ’acute’, ’infarct’, ’intra’, ’extraaxial’, ’haemorrhage’, ’demonstrated’

Acc. x8: ’per’, ’mri’, ’study’, ’performed’, ’earlier’, ’today’, ’no’, ’acute’, ’intracranial’,

’abnormality’, ’evident’

True: ’multiple’, ’small’, ’acute’, ’infarcts’, ’scattered’, ’throughout’, ’left’, ’superior’,

’temporal’, ’inferior’, ’frontal’, ’superior’, ’parietal’, ’lobe’

No Acc.: ’acute’, ’cortical’, ’left’, ’mca’, ’territory’, ’infarct’, ’within’, ’left’, ’parietal’,

’lobe’

Acc. x8: ’appear’, ’small’, ’acute’, ’left’, ’left’, ’superior’

True: ’restricted’, ’diffusion’, ’involving’, ’left’, ’posterior’, ’temporal’, ’lobe’,

’external’, ’capsule’, ’posteriorly’, ’extending’, ’left’, ’parietal’, ’lobe’,

’appearances’, ’keeping’, ’acute’, ’left’, ’mca’, ’infarct’

No Acc.: ’several’, ’small’, ’foci’, ’restricted’, ’diffusion’, ’within’, ’left’, ’parietal’, ’lobe’,

’keeping’, ’acute’, ’right’, ’mca’, ’territory’

Acc. x8: ’minor’, ’microangiopathic’, ’ischaemic’, ’changes’, ’involving’, ’left’, ’occipital’,

’lobe’, ’extending’, ’posterior’, ’internal’, ’capsule’

True: ’no’, ’acute’, ’infarction’, ’intracranial’, ’haemorrhage’

No Acc.: ’no’, ’acute’, ’infarct’, ’haemorrhage’, ’demonstrated’

Acc. x8: ’no’, ’acute’, ’infarct’, ’evidence’, ’recent’, ’haemorrhage’, ’demonstrated’

True: ’acute’, ’infarcts’, ’seen’, ’left’, ’frontal’, ’corona’

No Acc.: ’acute’, ’infarct’, ’left’, ’corona’, ’radiata’, ’involving’, ’june’, ’posterior’,

’limb’, ’left’, ’internal’, ’capsule’

Acc. x8: ’acute’, ’infarct’, ’left’, ’corona’, ’radiata’

True: ’acute’, ’infarction’, ’right’, ’mca’, ’territory’, ’involving’, ’caudate’, ’nucleus’,

’anterior’, ’limb’, ’internal’, ’capsule’, ’entire’, ’lentiform’, ’nucleus’

No Acc.: ’complete’, ’right’, ’aca’, ’mca’, ’territory’, ’infarcts’

Acc. x8: ’note’, ’made’, ’extensive’, ’right’, ’mca’, ’territory’, ’subacute’, ’infarct’,

’involving’, ’right’, ’corpus’, ’striatum’, ’corona’, ’radiata’, ’external’, ’capsule’,

’insular’, ’right’, ’frontoparietal’, ’cortices’, ’confluent’, ’large’, ’infarct’
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Figure 5.5: Model architecture Figure 5.6: Average BLEU-n scores of ac-
celerated brain volumes.

5.6 Cleaning the text reports dataset

As a separate investigation, the text reports in the training set were more dramatically cleaned.

The vocabulary was reduced to just 113 words (from 1021) and each sentence was manually

inspected and reworded. Examples of this are shown in Table 5.4. We hope to gain better and

more consistent text report outputs which will allows us to better ascertain how the quality

of the text reports degrade with acceleration rate, particularly in terms of 3-gram and 4-gram

BLEU.

Volume data In this setup, we processed the data slightly different. A volume in the dataset

was chosen and removed so that it could be used a reference volume. We then used an affine

transformation followed by a B-spline free-form deformation to register the volume to the

reference [17]. The data volume, x, is then normalised between 0 and 1. The normalisation

takes place by finding the 81.25 percentile, xl, and the 93.75 percentile, xu, of all voxels within

a given volume. These values encapsulate the lower and upper bound of meaningful values in

the data. The maximum value at which clipping occurs is maxxu + 4 ∗ (xu − xl),maxx. The

minimum value at which clipping occurs is the xl − 0.5(xu − xl).

Results Using 3-fold cross validation, the hyperparameter γ = 10ϕ was found to be optimal

in terms of all n-gram BLEU scores for ϕ = 4.0, outperforming a classification only model as

seen in Figure 5.7. We then evaluate the model on the test set against a range of different
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Figure 5.7: BLEU scores with varying
hyperparameter that balances the recon-
struction and classification capabilities of
the latent code. The dotted line shows
the BLEU scores of a classification only
model, with the highest dotted line being
BLEU-1.

Figure 5.8: Performance of report gen-
eration model with increasing accelera-
tion rate. The report generation is ro-
bust against acceleration rate until as ag-
gressive as ×8 acceleration.

acceleration rates from ×2 to ×32 as shown in Figure 5.8. Some examples of generate reports

are shown in Table 5.4. We confirm that results found in the previous sections but with better

context in the generated text reports as well as a more stable training process.

5.7 Conclusion and future work

We demonstrate how a latent space capturing pathalogical and spatial information can be

learned from accelerated brain DWI images and subsequently used to train a diagnostic report

generation network with promising results.

We present a streamlined pipeline that directly transforms an accelerated DWI acquisition

into a semantically-rich embedding space, from which radiological text reports can be learned.

Another aim of this preliminary study was to ascertain the use of balanced reconstruction and

classification auxiliary tasks for the generation of image embeddings in the context of accelerated

radiological report generation. Overall, we demonstrate how a balanced latent space capturing

pathological and spatial information can be learned from accelerated brain DWI images and
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Table 5.4: Sample ground truth and generated reports from fully sampled and under-
sampled 3D brain DWI using the cleaned text reports. Correctly identified concepts are
highlighted.

Reference: there is no acute infarct and there is no intraaxial haemorrhage and there is no extraaxial
haemorrhage

Acc. Rate 2: there is no acute infarct and there is no haemorrhage

Acc. Rate 4: there is no acute ischaemic lesion and there is no haemorrhage

Acc. Rate 8: there is no acute infarct and there is no intracranial haemorrhage

Acc. Rate 16: there is no acute ischaemic lesion

Acc. Rate 32: there is no acute infarct and there is no intracranial haemorrhage

Reference: there is a acute infarct in the right corona radiata and in the posterior thalamus capsule
region

Acc. Rate 2: there is a foci of restricted diffusion within the right corona radiata suggesting there is a
acute infarct

Acc. Rate 4: there is a foci of restricted diffusion within the right posterior lateral thalamus and there
is a signal abnormality suggesting there is a acute infarct

Acc. Rate 8: there is a signal abnormality suggesting there is a acute infarct and there is a foci of
restricted diffusion within the right corona radiata suggesting there is a acute infarct

Acc. Rate 16: there is a signal abnormality suggesting there is a acute infarct and there is a foci of
restricted diffusion within the right posterior lateral thalamus

Acc. Rate 32: there is a foci of restricted diffusion within the right posterior lateral thalamus and there
is a signal abnormality suggesting there is a acute infarct

Reference: there is a subacute infarct in the left middle cerebral artery territory

Acc. Rate 2: there are multiple acute infarct in the left middle cerebral artery territory

Acc. Rate 4: there is a foci of restricted diffusion in the right frontal parietal region and there is signal
abnormality

Acc. Rate 8: there are multiple foci of signal abnormality within the deep white matter

Acc. Rate 16: there is a large haemorrhage infarct in the left middle cerebral artery territory

Acc. Rate 32: there is a acute infarct in the left insular lobe and in the left middle cerebral artery
territory and in the right middle cerebral artery territory

Reference: there is a large restricted diffusion and there is a signal abnormality suggesting there is
a acute infarct in the posterior left middle cerebral artery territory

Acc. Rate 2: there is a acute infarct in the right middle cerebral artery territory and in the insular
right the right insular lobe and in the left insular lobe

Acc. Rate 4: there is restricted diffusion in the left inferior parietal lobe suggesting there is a acute
infarct in the left middle cerebral artery territory and in the left frontal operculum and
in the left parietal lobe

Acc. Rate 8: there are multiple foci of cortical acute infarct in the left parietal lobe and in the left
frontal lobe

Acc. Rate 16: there are multiple cortical and subcortical infarct in the left precentral gyrus and in the
postcentral gyrus and there is a infarct in the left occipital parietal region

Acc. Rate 32: there is a infarct in the left middle cerebral artery territory

Reference: there are multiple foci of restricted diffusion and there is signal abnormality in the medial
right occipital lobe and there are multiple foci within the thalamus bilaterally suggesting
there is acute ischaemia

Acc. Rate 2: there is a subacute right posterior cerebral artery territory infarct

Acc. Rate 4: there is a acute right posterior cerebral artery territory infarct in the right occipital lobe
and in the right splenium of the corpus callosum and in the right lateral thalamus and
in the medial right temporal lobe

Acc. Rate 8: there is a subacute right posterior cerebral artery territory infarct

Acc. Rate 16: there are multiple foci of acute ischaemia in the right posterior medial temporal lobe and
in the posterior circulation and in the right posterior medial temporal lobe and in the
cerebral hemisphere and in the right thalamus and in the posterior limb of the internal
capsule

Acc. Rate 32: there is a acute infarct in the right pons and there is restricted diffusion within the right
corona radiata suggesting there is a small acute infarct



116 Chapter 5. Accelerated MRI for Diagnostic Report Generation

subsequently used to train a diagnostic report generation network with promising results.

Future progress from this preliminary study includes investigations into different acceleration

schemes (e.g. Parallel Imaging) and more sophisticated language models. We also wish to

explore radial undersampling trajectories for DWI brain imaging which are expected to provide

improved diagnostic embeddings.

Broader ImpactWe envision this work being used in a streamlined diagnostic pipeline. At the

moment, during accelerated acquisition, we can expect to see a reconstructed image and perhaps

its associated pathological segmentation. However, with further development, we wish to see

this work being to generate pathological text reports directly from the accelerated acquisition,

particularly in cases where immediate diagnostic information is needed such as with brain

ischaemia where brain death can be imminent if not treated immediately.
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Chapter 6

ME-DDPM: Motion Exploiting

Denoising Diffusion Probablistic

Models

Diffusion Models are a class of generative models that have shown to produce high-

fidelity image reconstructions from accelerated MRI acquisitions compared to conven-

tional reconstruction algorithms. In the case of dynamic data — for example, cardiac

cine — aggressive acceleration rates for image reconstruction have been realised with

the advent of a recent method called the ME-CNN that uses motion estimation for

temporal data exploitation. In this work, we show that diffusion models provide a

natural way to use temporal data exploitation to better guide diffusion processes to-

wards the true intermediate distribution resulting in higher quality reconstructions.

Inspired by the ME-CNN, we introduce a new class of guided diffusion models for cine

MR reconstruction. Our proposed model, ME-DDPM, is compared against suitable

baselines that suggests that ME-DDPMs can be used to help aggressively accelerate

cine acquisitions with competitive fidelity.

117
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6.1 Introduction

A new class of generative models called diffusion models have recently made high fidelity image

generation possible without the cumbersome training and mode collapse typically experienced

with GANs [183, 162, 86, 84, 108]. The flavour of diffusion model we investigate in our study

is called the denoising diffusion probablistic model (DDPM) which is also a variance preserving

model 1 [170]. However, the methods we introduce can be generalised to any flavour of diffusion

model.

Diffusion models can be interpreted as reversing a stochastic process with a predefined drift

and volatility/variance. [161, 170] show that for a diffusion model with a certain variance

schedule and a large number of diffusion steps, the forward diffusion process transforms our

data distribution to approximately N(0, I). A key feature of the DDPM is that we can easily

access every latent distribution under certain choices of the variance schedule of the diffusion

process. This allows for an efficient training process. The trained DDPM model can then be

used to approximate the data distribution so that we may freely sample from the DDPM to

generate new images. We direct the reader to section 2.4 for more information on diffusion

models.

Concurrently, there has been work relating the motion exploitation of dynamic sequences to

aid in the reconstruction process ([141], chapters 3 and 4). Inspired by our previous work,

we propose to use similar motion exploitation for reconstructing dynamic sequences but in

the context of diffusion models. DDPMs offer advantages in high fidelity reconstructions but

possibly in aleatoric uncertainty estimation and handling noisy data (see section 7.5 for more

information on the use case of DDPMs). Combining motion exploitation with DDPMs allows

us to obtain even higher fidelity reconstructions under aggressive acceleration rates.

1Equations 5.13 and 5.51 in [136] give dCov(x)/dt = 0 as opposed to ∝ t2 for variance exploding models.
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6.1.1 Diffusion Models

Recent work has focused on modelling data generation as a stochastic process [143, 169, 170,

193, 161]. Typically, this involves transforming every data point in our target distribution q(x)

to N(0, I). The stochastic differential equation that models this evolution is shown in equation

(6.1):

dx = f(x, k)dk + g(k)dw, (6.1)

where x is data point being transformed, w is a Wiener process, k is the process index, f(·) is

the drift term and g(·) is the volatility/variance term . This process is known as a diffusion

process as it has known solutions for particular choices of the functionals f(x, k) and g(k).

Performing this transformation in reverse would instead gradually map z ∼ N(0, I) to q(x).

The concept is similar to conventional GANs [60] but the process by which this occurs is closer

to that of normalising flows whilst also bearing similarities to denoising autoencoders. This

reverse transformation is also a diffusion process and can be written as equation (6.2) [1, 170]:

dx = [f(x, k)− g(k)2∇x log qk(x)]dk̃ + g(k)dw̃, (6.2)

where w̃ and k̃ are in the reverse direction to the process index k and qk(x) is the distribution

of our data after it has been diffused with equation (6.1) until step k. The gradient of the log

data density from equation (6.2), ∇x log qk(x) — also known as the score, s(x, k) — is hard to

compute. Instead, we use a neural network (NN) to learn to calculate this — the NN learns the

noise present in the current diffusion image, ϵθ(xk, k) which is a proxy for learning the score as

ϵθ(xk, k) = s(x, k)/
√
1− αk̃ [196]. θ are the parameters of the NN.

In this study, the drift and volatility terms in equation (6.1) are set to match the set-up in

study by [161]. This results in a reverse diffusion step as shown in equation (6.3).
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xk−1 =
1
√
αk

(︂
xk −

1− αk√
1− α̃k

ϵθ(xk, k)
)︂
+ σkz, (6.3)

where z ∼ N (0, I), σk =
√
βk, α̃k =

∏︁
k(1− βk), α = 1− βk βk = β0 +

(βK−β0)
K

k where K is the

chosen number of diffusion steps in the model and β0, βK ≪ 1 controls the prescribed variance

schedule.

We advise the reader to see section 2.4 and [161] for more details on training our chosen flavour

of diffusion model for this study.

6.1.2 MRI Reconstruction

The problem of MRI reconstruction, equation (6.4), can be written as an unrolled optimisation

that consists of successively applied denoising and data consistency steps, the latter of which

has a closed form solution in the form of equation (6.5) for single coil acquisitions [49].

λ

2

∑︂
t

||Ext − yt||22 +R(x0, ..., xT ), (6.4)

where E is the encoding matrix that usually consists of an undersampling mask, D, and a

Fourier transform F , yt is the acquired k-space data at cine time frame t, T is the total number

of temporal frames in the acquisition andR is the regularisation imposed on the reconstruction.

xi = (λFTDTDF + I)−1(λFTDTy + CNNk(x
i−1)), (6.5)

where i is the index of the iterative reconstruction process and λ controls the trade-off between

the acquired data and the CNN regulariser (in the noiseless case, λ → ∞). More information

regarding this solution can be found in section 3.3 and in [49, 93].

Similarly, it can be shown that dynamic MRI reconstruction may be written as an unrolled op-
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timisation that consists of a ‘DCMAC’2 or motion augmentation term which introduces motion

in the reconstruction optimisation process (see chapters 3 and 4 for more information; [141]).

One possibility of introducing motion into the optimisation is via the temporal consistency

term in equation (6.6).

λ

2

∑︂
t

||DFxt − yt||22 +
ρ

2

∑︂
t

||DFMtxt − yt+1||22 +R(M,x0, ..., xT ), (6.6)

where Mt is the motion operation that transforms an image from time frame i to i + 1 and ρ

controls the trade-off between the DCMAC term and the regularisation.

A decomposition of this optimisation results in two closed forms expressions — a data consis-

tency (DC) term [49] and a DCMAC term (see below and [141]) — and two proximal mapping

terms that correspond to the image denoiser and a motion estimator (off loaded to CNNs). We

advise the reader to see chapter 3 for more information on this decomposition.

The DCMAC term is shown in the following equation:

xk
i = (λFTDTDF + ρI)−1(λFTDTyt+1 + ρMk

t u
k−1
t ), (6.7)

where uk+1 = CNNθ(u
k, xk). In the case of a perfect, noiseless MRI scanner (λ → ∞) and

perfect motion estimation, the DCMAC step involves taking the output from the previous

cascade/iteration, the denoised frame, and warping it to the next frame where data consistency

is subsequently applied.

In our study, we suggest that the conventional CNN can be replaced by that of a DDPM with

two main motivations behind this: (1) Increased fidelity whilst having the ability to sample

from the learned data distribution (2) Direct manipulation of the latent representations of the

DDPM to better leverage our acquired (accelerated) data. In particular, we take inspiration

from the data consistency term and equation (6.7) — the DCMAC term — to allows us to direct

our latent representations towards one that contains information from the exact distribution

2Data-Consistent Motion-Augmented Cine
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for the acquired data whilst also exploiting motion information to leverage the entire temporal

direction of the acquired data.

6.1.3 Langevin Diffusion for refinement of latent estimate

Introducing stochastic differential equation (6.8), it can be shown that the evolution of the

sampling distribution x converges to the stationary distribution qk(x) using the Fokker-Planck

equation [193, 170]. As a result, this Langevin-like diffusion process samples from qk(xk) and

can be used to refine estimates of our sample xk with a carefully chosen step size, δ. This

method has been referred to as the ‘corrector’ method in previous work [170, 180].

dxk = −∇ log qk(xk)dτ + ϵdW, (6.8)

where xk ∼ qk(xk), W is a Wiener process and τ is the temporal index of said process. Using

the Euler-Maruyama discretisation, we can approximate Langevin diffusion with our trained

score function as in equation (6.9).

xτ+1
k = xτ

k − δ
ϵθ(x

τ
k, k)√

1− αk̃

+
√
2δz, (6.9)

where τ denotes the iteration of the corrector method, δ is the step size used in the discretisation,

and z ∼ N(0, I). This is presented in algorithm 2.

6.2 Related Work

Motion-based dynamic MRI reconstruction has been studied with conventional optimisation

techniques, notably kt-FOCUSS introduces a way for motion to be used in aiding the recon-

struction process given fully-sampled references [42]. Also requiring fully-sampled references

is a recently proposed deep learning end-to-end motion guided reconstruction network called

MODRN [190]. This resembles kt-FOCUSS with motion estimation and motion compensation
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(ME/MC; see section 4.1.3 for more information) but using CNNs for regularisation (U-net with

recurrent bottlenecks). These techniques require fully-sampled, high quality reference frames

which may not always be attainable such as with certain patients or in the case of fetal cardiac

data.

More recently, there has been extensive work that was first to introduce motion estimation

into the problem of deep learning reconstruction (see chapters 3 and 4; [141]). This takes the

form of the end-to-end ME-CNN (motion exploiting CNN) whereby motion is used to generate

data consistent motion-augmented cines (DCMACs) that aid in exploiting data in the temporal

direction. The decomposition in section 6.1.2 is based on this work.

With diffusion models, previous work in [194, 180] show that data consistency can be used

in the reverse diffusion process to guide the latent representation towards performing MRI

reconstruction from undersampled acquisitions. Interestingly, [180] show that a diffusion model

trained to generate magnitude images can be used for complex valued acquisitions without

having seen complex data at training time. At the time of writing, there is no work that

incorporates motion into the DDPM framework.

6.3 Method

In order to integrate the DC and DCMAC term into the ME-DDPM, we acknowledge that the

DCMAC term is usually followed by a denoising term that is usually off-loaded to a vanilla CNN

at training time. In our proposal, we propose no changes to the current training of DDPMs

on cine MRI data. Given the diffusion variable xt
k at diffusion step k (sometimes referred to

as latent representation), we apply the DCMAC term using the correct scaling of the data for

the given variance at diffusion step k. Instead of applying a conventional CNN denoiser after

application of the DCMAC term, we instead use Langevin diffusion to effectively denoise the

latent representation xt
k. The DCMAC term introduces new information from time frame t− 1

into time frame t via motion exploitation. As a consequence, an interpretation of Langevin

diffusion after the DCMAC step is to ensure that the new information introduced matches the
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Figure 6.1: Our proposed ME-DDPM. The process starts with xK drawn from a standard
normal distribution. The latent variable, xk, is reverse-diffused followed by data consistency
and our LD-DCMAC block. This ultimately generates an estimate for a new latent variable
for the next reverse diffusion step. The control experiment DDPM is identical but does
not contain the LD-DCMAC block. The baseline is a simple U-net.

exact distribution of the latent distribution and to apply corrections if not [180, 170]. We refer

to this step as Langevin Diffused DCMAC (LD-DCMAC).

It should be noted that whilst we use a conditional model pk(xk|y) in our study, it is also possible

to use an unconditioned model. The key part that changes is that our reverse noising process

needs to be modified to reflect that we no longer wish to take a random walk across the entire

data distribution but instead remain within some locally vicinity of the latent representation.

This is the approach also used by [194, 180] where they find the motivation from attempting to

perform something that resembles a proximal mapping operation during each reverse diffusion

step.

The full implementation of our proposal is outlined in Algorithm 1.
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6.3.1 Motion Estimates

The optimisation in section 6.1.2 assumes a jointly training motion estimator. However, the

training scheme for the DDPM as proposed does not natively incorporate this capability. In-

stead, we train our motion estimator separately using the identical autoencoder-like network

from section 3.7. The choice of this network is motivated by the aim to demonstrate that

our proposed method does not require high quality motion estimates. Different datasets will

have different types of motion thus it may be harder to perform motion estimation and motion

estimates may not be unique with variations from one network initialisation to another [37].

By using this crude motion estimator, we hope to demonstrate the robustness of our motion-

exploiting DDPMs even when motion estimates are suboptimal. For example, out-of-training-

domain cases for particular cardiac views may generate optical flows with too much or too little

displacement. Just as in section 3.7, higher quality motion estimates can be used in future use

of our proposed method.

6.3.2 Score Function

We train the score function using the same methodology as in [161]. This involves making use

of the exact distribution at each diffusion step being known in closed form due to the choice

of drift and volatility terms in the SDE that set up the diffusion model. At each training step,

a random diffusion step between k = {0...K} is uniformly chosen. A point within the set of

latent representations at k for the training example is drawn, xk - this involves a weighted sum

of the training example, x, and normal noise, z, as in equation (6.10).3 The xk term and k is

provided to a U-net which is trained to predict the noise present in xk according to the loss

function in equation (6.11).

xk =
√
α̃x+

√
1− α̃z (6.10)

3In the case of variance preserving models, the variance at any diffusion step is aimed to be constant and
independent of k
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||ϵθ(x, k)− z||22, (6.11)

where ϵθ is the U-net which is trained to learn the score function of the data distribution at

every diffusion step k.

6.3.3 Architecture and Dataset

The U-net used in the study is the same as from [184] except uses 3D convolutions (for temporal

dimension) and we used a channel multiplier of 16 rather 32 to ensure we can fit the network

into GPU memory. This U-net consists of 5.5M parameters4. The methodology of this study

is summarised in Figure 6.1.

We used cardiac cine data from the UK BioBank study with over 24,000 scans, as in chapter 4.

These are magnitude only images and hence we generate synthetic phases using the approach

from [116] in order to disrupt any k-space symmetry that may occur during retrospective

undersampling.

We trained our PyTorch implementation with a batch size of 1 on the full 2D cine slice; patches

were not used. Training took 10 days on a 48GB NVIDIA RTX A6000 GPU but we speculate

that this training time can be significantly reduced by increasing the batch size by using a

patch based training scheme [93, 141] or more GPUs in parallelised training.

4Implementation of this U-Net can be found at https://github.com/openai/guided-diffusion

https://github.com/openai/guided-diffusion
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Algorithm 1 MEDDPM Inference using DCMAC and DCLD (Data Consistent Langevin
Diffusion)

Require: T , number of temporal frames

Require: K, number of diffusion steps

Require: Klimit, the diffusion step at which DCMAC iterations stop being applied

Require: Mt, the motion estimate from the t’th frame to t+ 1’th frame ∀t ∈ {1...T}

Require: NDCMAC, number of DCMAC iterations

Require: yt, Dt for t = 1...T

xK ∼ N (0, I)

for k = K...1 do

z ∼ N (0, I) if k > 1 else z = 0

x′
k ← 1√

αk

(︂
xk − 1−αk√

1−α̃k
ϵθ(xk, k)

)︂
+ σkz ▷ Reverse Diffusion Step

if k > Klimit then

for i = 1...NDCMAC do ▷ LD-DCMAC Step

x′
k ←Mx′

k ▷ Motion Warp

x′
k ← Shift(x′

k, 1) ▷ torch.roll (circular shift)

xk ← DCLD(xk,KL)

end for

end if

xk ← DCLD(x′
k,KL) if k > 1 else DC(x′

k,y)

end for

return x0

Algorithm 2 DCLD (Data Consistent Langevin Diffusion)

Require: xk estimate of latent variable

Require: KL, number of Langevin diffusion steps

Require: k, current diffusion step

Require: y acquired data for data consistency

x0
k ← xk

for τ = 1...KL do

xτ
k
′ ← DC(xτ−1

k ,
√
α̃ky) ▷ Latent Data Consistency Step

z ∼ N (0, I) ▷ Generate Random Diffusion Noise

xτ
k ← xτ

k
′ − δksθ(x

τ
k, k) +

√
2δkz ▷ Langevin Diffusion Step

end for

return xτ
k
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6.4 Results

We evaluate our proposed method with an aggressive acceleration rate of x16 with two suit-

able baselines. We used 8 central frequency-encoding (FE) lines and a Cartesian Gaussian-

distributed variable density sampling mask. The first vanilla U-net trained with an L2 loss.

The second is a data guided DDPM as presented in [194, 180] in the case of noiseless data distri-

butions (λ→∞). For our proposed ME-DDPM, we use K = 1000 diffusion steps, NDCMAC = 1

DCMAC step per diffusion step and KL = 1 Langevin diffusion step per DCMAC step. We

do not apply DCMAC steps for the last Klimit = 50 diffusion steps to reduce the impact of

imperfect motion fields being used in the reconstruction process. For the Langevin diffusion

step size, ϵk we use:

δk =
(γσk)

2

2
, (6.12)

where we found γ = 0.1 to generate satisfactory reconstructions. We use 3-fold cross validation

to evaluate the performance of our models. For the test fold we used a smaller subset of 600

images for evaluation.

Some example reconstructions are shown in Figures 6.2-6.5 and a quantitative evaluation in

Table 6.1.

Table 6.1: Results of dynamic reconstruction with x16 undersampled data. The MED-
DPM provides a vast enhancement over the DDPM from [194, 180].

Model PSNR SSIM

Baseline U-net 28.33± 0.76 0.834± 0.060

DDPM (SOTA) [194, 180] 30.72± 1.07 0.913± 0.015

MEDDPM (Ours) 34.33± 1.07 0.962± 0.010

Difference

DDPM - Baseline 2.39± 0.92 0.079± 0.059

MEDDPM - Baseline 6.00± 0.80 0.128± 0.058

MEDDPM - DDPM 3.61± 0.50 0.049± 0.009
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Figure 6.2: Reconstruction outputs from baselines and our proposed model alongside the
ground truth. The (PSNR, SSIM) of the CNTL (Baseline U-net), DDPM and MEDDPM
are: (28.0, 0.804), (30.1, 0.885), (33.5, 0.945).

Figure 6.3: Reconstruction outputs from baselines and our proposed model alongside the
ground truth. The (PSNR, SSIM) of the CNTL (Baseline U-net), DDPM and MEDDPM
are: (29.6, 0.884), (31.2, 0.936), (35.3, 0.973).



130 Chapter 6. ME-DDPM: Motion Exploiting Denoising Diffusion Probablistic Models

Figure 6.4: Reconstruction outputs from baselines and our proposed model alongside the
ground truth. The (PSNR, SSIM) of the CNTL (Baseline U-net), DDPM and MEDDPM
are: (27.1, 0.864), (28.9, 0.907), (32.2, 0.957).

Figure 6.5: Reconstruction outputs from baselines and our proposed model alongside the
ground truth. The (PSNR, SSIM) of the CNTL (Baseline U-net), DDPM and MEDDPM
are: (27.5, 0.834), (30.1, 0.917), (34.5, 0.967).
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6.5 Discussion

As shown in the results, the ME-DDPM out-performs the standard diffusion model and the

baseline U-Net. Our ME-DDPM model for dynamic MRI reconstruction is able to leverage the

benefit of motion via the DCMAC steps whilst mitigating the potential artefacts introduced

by the DCMAC step. Once DCMAC steps are applied, our model uses the gradient of the

learned data distribution to perform gradient descent towards the nearest point that matches

our motion augmented latent representation.

This results in performance gain of 8.4% of the ME-DDPM over the DDPM compared with

a vanilla U-net model. A Wilcoxon signed-rank test confirmed the performance of the ME-

DDPM with p≪ 0.01. It should be noted that the motion estimates used in the DCMAC step

were far from optimal - there is a vast literature on motion estimate/registration that produce

estimates of much higher quality (see section 3.7 for more information). These estimates would

likely increase the reconstruction quality even further.

We note that training the ME-DDPM was much more straightforward compared to GANs and

comes with the benefit of higher fidelity reconstructions. Furthermore, it was surprising that

our model was trainable with only a batch size of 1 - GANs typically do not work well in this

regime.

Due to the probabilistic capabilities of the diffusion models, the ME-DDPM should be able

to better adapt to data corruption scenarios such as motion corruption. We leave this for

future work. Further to this, it is unclear whether DDPMs can adapt to different domains as

friendly as other vanilla, discriminative reconstructions models (see Chapters 3 and 4; [134,

141]). Domain adaptation is an important topic in MRI reconstruction and more generally, in

deep learning and thus warrants significant study in future advancement of this work.

In order to sample from the ME-DDPM, it requires K = 1000 forward passes through a

computational intensive U-net which took 10 minutes on an NVIDIA RTX A5000 with 24GB

of memory. This removes the possibility of real time imaging with our proposed method.
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However, it should be noted that the probabilistic capabilities of DDPMs may allow the ME-

DDPM to be leveraged when training with highly corrupted training data e.g. motion corrupted

acquisitions (see section 7.5).

6.6 Conclusion

One of the main limitations of this study is that training DDPMs bares a large computational

cost which restricted us to a reduced capacity U-net model. The inference time is also large as

with all diffusion models. However, there exists work that focuses on reducing this inference

time constraint [181]. Future work should investigate incorporating such speed increases with

the ME-DDPM model.

Training the ME-DDPM is almost as straightforward as training conventional deep learning

models making a convenient solution for the problem of motion-based reconstruction. Higher

fidelity images whilst being able to model the general statistics of the training distribution are

desirable properties in the future of MRI reconstruction. However, there are a few unanswered

questions that are of utmost importance, as mentioned above. Overall, ME-DDPMs offer a

promising direction of research in dynamic MR reconstruction.



Chapter 7

Unsupervised MRI reconstruction with

Diffusion Models

Diffusion Models are a class of generative models that have shown to produce high-

fidelity results in the case of accelerated Magnetic Resonance (MR) image reconstruc-

tion. In MR imaging, there are a wide range of imaging scenarios where obtaining

fully sampled k-space data is challenging which results in limitations in spatial and

temporal resolution. Recent work shows that MR reconstruction can be performed

with deep learning without the need of fully sampled data during learning. In this

paper, we show that diffusion models can be used to mitigate a variety of imaging

challenges that MR reconstruction presents. We propose how diffusion models can

be used to reconstruct accelerated acquisitions when the training targets are noisy or

not fully sampled. The lack of ground truth data presents an issue that diffusion

models can overcome. We demonstrate this with studies using cardiac data from the

UK BioBank study and knee MR images from the fastMRI challenge. We also show

that diffusion models outperform a variety of baselines with over 10% increases in

PSNR and SSIM in some scenarios.

133
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7.1 Introduction

There are many scenarios whereby full acquisitions of k-space data required for the reconstruc-

tion of MR images are made difficult by issues such as respiratory motion, patient discomfort

and slow scan times. This results in limitations in spatial and temporal resolution. To mitigate

the impact of such issues, methods are sought to accelerate the acquisition of k-space data.

Accelerated acquisition usually involve the undersampling of k-space and parallel imaging can

also be used.

The problem of accelerated MR image reconstruction stems from that data acquisition takes

place in a Fourier space, the so-called ‘k-space’, rather than in image space. A condition for

reconstruction from Fourier coefficients is that one must sample enough data such that we do

not violate the Nyquist sampling criterion [40]. When this criterion is violated, compressed

sensing formulates a method by which the true image can still be recovered [40]. The specific

optimisation problem by which image recovery occurs is detailed by equation (7.1).

α

2
||DFx− y||22 +R(x), (7.1)

where D is an undersampling mask that represents the acquired points in k-space, x is the

reconstructed image, y is the acquired single-coil k-space data, F is the Fourier transform

and R is the image regularisation. There is a vast literature on choosing and/or learning a

regulariser to perform the above optimisation [93, 140, 110, 16, 188, 36, 198], especially in a

supervised fashion where fully-sampled data exists for use in the training objective. In this

paper we primarily focus on the scenario where fully-sampled k-space data does not exist and

thus we must operate in the unsupervised or self-supervised setting. We conduct preliminary

experiments on the assumption of single-coil data but in section 7.6 we also investigate multi-coil

data.

Unrolled reconstruction networks Whilst classical reconstruction methods such as FISTA

do not rely on fully sampled data, they are typically restricted to less aggressive acceleration
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factors and low image fidelity [41]. One possible iterative decomposition of the optimisation

in equation (7.1) is through equations (7.2) and (7.3) where the former represents a proximal

mapping learned by convolutional neural network (CNN) and the latter is a data consistency

step to hold the reconstruction true to the acquired data [93, 123, 49]:

uk = CNNk(x
k−1) (7.2)

xk = (λFTDTDF + I)−1(λFTDTy + uk), (7.3)

Here xk is the estimated reconstruction at iteration k and λ controls the level of data consistency

(λ→∞ in the noiseless case). This is similar to the approach of the DC-CNN [93, 123] rather

than variational networks which are gradient descent based [110].

Loss functions and data corruption A popular choice of loss function for MRI recon-

struction is the L2 loss or variation thereof [140, 126, 177]. Hybrid losses have also been used

whereby GAN-like losses are used to create (medically) photorealistic outputs [98]. The moti-

vation behind using an L2 loss is for maximising the likelihood of the model output (see section

2.4).

In practice, for most types of high quality, noiseless data, an L2 loss works sufficiently well as

shown in previous literature e.g. [110, 93, 177, 121]. However, a fundamental assumption is

that the distribution of model errors is identically normally distributed. For MRI data, this

may not necessarily be true particularly in case of motion corruption. When imaging targets in

supervised learning are magnitude images, the noise is also non-Gaussian (but instead Rician).

In the case of a Rician distributed noise such as with magnitude-only images, an L2 loss would

not be directly maximising the likelihood and hence would result in a suboptimal optimisation

procedure.

However, our targets may not necessarily be magnitude images but rather complex-valued

images which contain a noise that is much closer to being Gaussian rather than Rician. Whilst

it may appear that an L2 loss would be appropriate under this scenario, another assumption
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of using an L2 loss is that the noise in the imaging target is identically and independently

distributed (i.i.d.) across the dataset. However, this is not necessarily true in the case of certain

datasets such as the fastMRI dataset where images come from different scanners. Additionally,

in the multicoil case, some coils may contain more noise than others depending on the imaging

subject and scanner geometry [158, 12, 145].

Aims and Contributions We introduce the use of score-based generative models for self-

supervised MR reconstruction without fully sampled data. In particular, we use a denoising

diffusion probabilistic model (DDPM) to efficiently train a neural approximation to our re-

quired data density [161, 170]. The trained DDPM model substitutes the CNN in equation

(7.2). The main issue of using DDPMs to solve this problem is that we lack knowledge of the

fully-sampled latent distribution. In our study, we propose a solution to this problem. Our

main contribution is proposing how to use DDPMs in a self-supervised setting in the context

of MRI reconstruction. In particular, we focus on diffusion models for unrolled Cartesian ac-

celerated MR reconstruction without fully sampled data and only noisy acquisitions. The main

motivations behind the use of DDPMs to solve this problem are as follows:

1. These generative models provide an easy way to sample from the approximate conditional

distributions whilst also being straightforward to train unlike conventional GANs. In the case

of very corrupted k-space data such as noisy data from low-field MRI scanners or motion

during the acquisition, generative models can be leveraged to mitigate for this data corruption

in the reconstruction process

2. DDPMs have been shown to provide high fidelity results competing with vanilla baselines

[194, 180]. It’s possible they may perform competitively in the case of self-supervised MRI

reconstruction

3. DDPMs perform (approximately [193, 161, 182]) maximum likelihood training without re-

quiring prior knowledge of the noise distribution of the data

The main contributions of our study are as follows:
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1. A general proof of concept that diffusion models can be used in the unsupervised scenario to

perform MRI reconstruction which has not been previously studied;

2. A direct way to extend DL-MRI reconstruction to multiple reconstruction steps (not diffusion

steps) whilst still leveraging the generative advantages of diffusion models. Incorporating

the concept of network unrolling with DDPMs helps generate high fidelity reconstructions

compared to previous studies such as [180, 194];

3. Show that diffusion models can be directly leveraged for mitigating the issue of training with

noisy MRI data;

4. Present an example of noise-mitigated MRI reconstruction without fully sampled training

data from the fastMRI single-coil and multi-coil reconstruction challenge.

The structure of the main content in this chapter is summarised below:

1. Section 7.3 — MRI reconstruction without Fully Sampled training targets using our proposed

1-DDPM (‘unsupervised’/self-supervised learning);

2. Section 7.4 — Extension of DDPM-based MRI reconstruction to multiple reconstruction steps

(not diffusion steps) with our proposed score decomposition (with and without fully-sampled

training targets);

3. Section 7.5 — Exploration of the use case of DDPMs for mitigating the impact of noisy

imaging targets (with fully-sampled training targets);

4. Section 7.6 — Using the above three sections for noise-mitigated, unsupervised cascaded

MRI reconstruction using our proposed DC2DDPM as demonstrated on the fastMRI knee

dataset.
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7.2 Data

The dataset used in our study consists of 1,000 3D multi-slice short-axis cardiac cines taken

from the UK BioBank study1 [67]. We extract all apical, mid-cavity and basal slices and

convert the MR cine into a stack of 2D magnitude images cropped to a size of 192 x 192. We

normalise that data between -1 and 1 using the 99th percentiles within each short-axis volume.

We used 700 of the cines during training and test the methods in this study on 1000 images

sampled randomly from the remaining 300 cines. Associated with each extracted 2D image in

our dataset, there is also a Cartesian undersampling mask with a Gaussian distribution and x4

acceleration rate (25% sampling).

To conclude the chapter, we evaluate our method on the fastMRI knee dataset. The details of

this dataset are given in section 7.6.

7.3 Generative Models for Unsupervised MRI

Reconstruction with DDPMs

7.3.1 Related works

Unsupervised MRI reconstruction There have been a range of studies to perform MRI

reconstruction without complete k-space data [36, 41, 177, 154]. In the study by [177], they

introduce a k-space sampling strategy that results in high fidelity reconstructions whilst lacking

fully sampled data at training time. The idea is that the training set consists of k-space images

each acquired with its own undersampling mask. At training time, the acquired lines in the

undersampling mask, Ω, are divided into two disjoint sets, Λ and Ω/Λ. The strategy for

choosing Λ is to choose lines in Ω according to a Gaussian distribution. The fraction of the

number of lines in this subset, ρ, which results in highest fidelity reconstructions was found to

be ρ = 0.4 [177]. The network architecture used resembles that of an unrolled optimisation

1http://imaging.ukbiobank.ac.uk

http://imaging.ukbiobank.ac.uk
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whereby each CNN block represents a proximal operation (equation (7.1)) and is immediately

followed by a data consistency step (equation (7.3)) [93, 177]. In the case of [177], the input to

the network is data at the locations in mask Ω/Λ which is also used in the data consistency

steps. However, the training loss is only computed on the k-space lines in the Λ mask. This

allows the network to implicitly learn the full reconstruction whilst only being supervised to

reconstruct part of it.

Generative adversarial networks (GANs) have provided inspiration to the problem of MR re-

construction in various forms [188, 154, 102]. In particular, [154] use the adversarial training

scheme of WGANs to also implicitly perform MR image reconstruction without fully-sampled

data. A generator which takes the form of an unrolled optimisation network produces an out-

put given a zero-filled reconstructed acquisition. This output is subsequently undersampled

with a random mask that is different to that of the input/training data. A discriminator is

then trained to discriminate between real, undersampled data and these undersampled outputs.

This discriminator is subsequently used to train the generator to produce better samples which

the generator can only do from implicitly learning to reconstruct the fully sampled image from

the acquired/undersampled data.

Generative Modelling with Score-based Models In terms of generative modelling, re-

cent work in the field has focused on the use of stochastic differential equations (SDEs) for

approximating data distributions [170, 193]. This relies on mapping the data distribution q(x)

to N(0, I) through a forward diffusion process denoted in equation (7.4):

dx = f(x, t)dt+ g(t)dw (7.4)

Here x is our latent variable being diffused, w is a Wiener process and t is the index of said

process. Interestingly, the reverse process of equation (7.4) is also a diffusion process and can

be written as equation (7.5) [1, 170]:

dx = [f(x, t)− g(t)2∇x log qt(x)]dt̃+ g(t)dw̃, (7.5)
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Here w̃ and t̃ are in the reverse time direction and qt(x) is the distribution of the diffusion of

our data at diffusion step t. The reverse diffusion process requires the gradient of the log data

density which can be off-loaded to a conditioned neural network giving us a score function,

s(x, t). [194, 180] show that data consistency can be used in the reverse diffusion process to

guide the latent representation towards performing undersampled MRI reconstruction.

In the case of DDPMs, the drift and volatility terms are set by the functions in equations (7.6)

and (7.7) for βt << 1. This is similar to the diffusion process in variance preserving SDEs

[170]. This choice allows the calculation of any latent sample xt given x0 which results in an

efficient and simple training process [161]:

f(x, t) = −1

2
βtx (7.6)

g(t)2 = βt (7.7)

As in [161], we define some useful quantities that control the stochastic process: α̃t =
∏︁

t(1−βt)

and βt = β0 +
(βT−β0)

T
t where T is the chosen number of diffusion steps in the model and

β0, βT ≪ 1 controls the prescribed variance schedule. In DDPMs, instead of using a weighted

sum of score matching losses to directly maximise the log-likelihood [193], an unweighted L2

loss is used that predicts the amount of noise present in each latent variable, xt:

L = Ex0,ϵ,t

[︂
||ϵ− ϵθ(xt, t)||2

]︂
, (7.8)

where ϵ ∼ N (0, I), θ are the parameters of the neural network and the following relation

between the score and ϵθ exists:

sθ(xt, t) = −
ϵθ(xt, t)√
1− αt̃

. (7.9)
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7.3.2 Method

With our undersampled data, it is not possible to use DDPMs in the traditional form to approx-

imate the fully-sampled data densities ∇qt(x). This is simply because without knowledge of

the ground-truth data, we cannot simulate the forward diffusion process. Instead, we condition

our data density (and thus our learned score function) on the k-space line number(s) that we

are trying to predict which we denote as Λ. Our score function is trying to learn ∇qt(xΛ|Λ).

In other words, the score function only operates on the k-space lines contained within Λ. One

possible choice for Λ is that it contains only a single line in k-space.

This conditioning is possible in a way that allows training to take place efficiently. This is due

to how k-space frequencies in Cartesian undersampling present themselves in image space. A

particular point in Fourier space generates a continuous sinusoid in the image domain with a

specific number of peaks, troughs and phase. In the forward diffusion process, we only add

noise to the line(s) Λ in k-space. This process is summarised in the equation below:

xt,Λ = FTDΛF(
√︁

αt̃FTDT
Λy +

√︁
1− αt̃ϵ). (7.10)

This makes it possible for a CNN to better condition itself to predict information for a particular

line in k-space whilst still operating in the image domain. The k-space position(s) is implicitly

encoded rather than directly encoded like with positional encoding found in Transformers [95].

DDPM conditioning Along with the Λ condition, we also condition our score function on

the acquired data. During inference, this conditioning consists of all of the acquired k-space

data, y = yΩ. During training, this condition is changed to yΩ/Λ so that it does not include data

that the score function is trying to predict. This takes inspiration from the work in [177] where

they train with a loss function only on Λ to implicitly learn to predict the entire underlying

image. In our study, we cannot leverage exactly the same idea since we require a known latent

distribution at training time which forces us to explicitly learn to score Λ only. We study two

settings for Λ: ρ = 0.03 which is equivalent to having a single k-space line in Λ and ρ = 0.4
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which was found to be optimal in the case of CNNs in [177].

By leveraging k-space based positional encoding, we present our proposed method in algorithms

1 and 2 for training and inference respectively. The training of the model occurs in the same

style as with DDPMs [161] except the latent variables only contain the lines Λ in the latent

k-space. Inference is also identical to DDPMs except we generate reconstructions for only the

lines Λ and hence multiple inference passes are required with different Λ to ensure each line in

the k-space is reconstructed at least once. All code was implemented in PyTorch and will be

available on GitHub.

Algorithm 3 Training

while not converged do

x0,Ω ∼ q(x0,Ω)

t ∼ Uniform({1...T})

ϵ ∼ N (0, I)

Λ ∼ Gaussian(Ω; ρ)

ϵΛ = FTDΛFϵ

x0,Λ = FTDΛFx0,Ω

xΩ/Λ = FTDΩ/ΛFx0,Ω

xt,Λ =
√
α̃tx0,Λ +

√
1− α̃tϵΛ

ϵ̂Λ = ϵθ(xt,Λ, t|xΩ/Λ)

Gradient Descent: ∇||ϵ̂Λ − ϵΛ||2

end while

Algorithm 4 Inference

Require: Λ1...ΛNs.t.Λi /∈ Ω

Require: Λ1 ∪Λ2 ∪ ...∪ΛN ∪Ω samples every k-

space line at least once

Require: acquired data, xΩ, DΩ

xT ∼ N (0, I)

DΛ̃ =
∑︁

i DΛi

for t = T...1 do

ϵ̂← 0

z ∼ N (0, I) if t > 1 else z = 0

for i = 1...N do

xt,Λi
ˆ ← FTDΛi

Fxt

ϵ̂← ϵ̂+DΛi
Fϵθ(x̂t,Λi

, t|xΩ)

end for

ϵ̂← ϵ̂⊙ 1
DΛ̃

ϵ̂← FT ϵ̂

ŝ← −ϵ̂/
√
1− αt̃

xt−1 = 1√
1−β

(︂
xt + g2(t)ŝ

)︂
+ g(t)z

end for

return x0 + xΩ (equation 3)
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Experiment PSNR ROI-PSNR SSIM ROI-SSIM

CNTL (Yaman et al. 2019) 26.9± 1.3 25.8± 1.0 0.840± 0.039 0.895± 0.022

ρ-DDPM [Ours] 27.0± 1.3 25.0± 1.0 0.837± 0.035 0.892± 0.019

1-DDPM [Ours] 29.5± 1.7 28.8± 1.5 0.867± 0.037 0.927± 0.020

Difference:

ρ-DDPM - CNTL 0.1± 0.4 0.2± 0.5 −0.002± 0.012 −0.002± 0.011

1-DDPM - CNTL 2.6± 0.7 3.0± 0.8 0.028± 0.016 0.032± 0.011

Table 7.1: Table of results using 1000 test images. The CNTL experiment refers to the
model proposed in [177]. The PSNR and SSIM metrics are shown for the whole image
as well as for a central crop of the image in the region of interest (ROI). Whilst faster
inference can be obtained with ρ-DDPM, the image quality isn’t as competitive as 1-
DDPM. 1-DDPM outperforms the CTNL in both PSNR and SSIM. The last two rows of
the table show the average (and standard deviation) of the difference in PSNR and SSIM
calculated per example in the test set.

7.3.3 Experimental results

Unsupervised DDPMs In order to evaluate our proposed DDPM-based model, we train a

Unet taken from [184] with 8.6M parameters that is conditioned on the diffusion index, t. As

in [161], we use T = 1000 diffusion steps setting β0 = 0.0001 and βT = 0.2. We also train

two versions of the model: one in which at training time, the score function only predicts a

single line in k-space at a time, ρ = 0.03, (referred to as 1-DDPM), and one in which the score

function predicts a small subset of k-space lines, ρ = 0.4 (referred to as ρ-DDPM). In the case

of ρ = 0.4, we also performed a random search for a set of N masks Λ1...ΛN such that every

k-space line was fully-sampled at least once. We found that N = 35 was sufficiently large such

that the random search finished within a few seconds. We also trained the model proposed in

[177] with a single proximal mapping with data consistency for a fair comparison against our

proposal. It should be noted that we used the same Unet structure here as in our proposed

DDPM model with the same number of parameters [184]. The results are summarised in table

7.1. ROI refers to calculation of said metric in the central region of interest in the image rather

than across the entire image. Some examples of the results are shown in figure 7.1 and some

particular zoom-ins are shown in figure 7.2.
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Figure 7.1: Some examples of results of 1-DDPM vs CNTL. Each row is a different
example from our test set. ”GT” refers to the ground truth image taken directly from the
UK BioBank dataset before any retrospective undersampling. The third and fifth columns
are the difference between the ground truth and the stated method. It can be seen that
1-DDPM generally produces fewer image artefacts compared to the CNTL experiment. In
particular, edges in the 1-DDPM output are more sharply defined whilst also being less
noisy overall.
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Figure 7.2: Results of 1-DDPM vs CNTL in paticular regions. We show some particular
clear cases where the 1-DDPM model has produced a sharpness that the CNTL experiment
hasn’t been able to replicate.

7.3.4 Discussion

Unsupervised DDPM Our results show that DDPM models provide some performance gain

when compared against the control experiment. Further to this, we found that using a single

line Λ performs far better than with ρ = 0.4. This is likely due to the simplicity of being able

to encode the spatial waveform introduced by single k-space line Λ (e.g. the network could

implicitly perform an absolute or ReLU-based summation of the network input to determine

the k-space line being predicted hence creating an implicit embedding for k-space position).

For ρ = 0.4, after the mask DΛ is applied to the noise in Fourier space, the way in which

positional data is encoded in the resulting masked noise in image space is much less obvious

and thus harder for the network to learn and decipher.

Using a single NVIDIA RTX A6000 GPU, we found that a forward pass with our proposed

method takes around 6 minutes for the single line Λ. This could be parallelised with N GPUs to

perform inference in around 30 seconds. However, the control experiment as presented in [177]

takes only a few hundred milliseconds and thus presents a significant advantage for real-time

imaging. In spite of this, our proposed method may still provide benefits for noisy or corrupted

imaging scenarios and may have some use as a post-processing step.
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7.3.5 Conclusion

In this study, we proposed using a DDPM instead of a vanilla CNN in a particular unrolling of

the MRI reconstruction process. We conditioned our DDPM on the k-space lines that needed

to be predicted. In particular, we studied the scenario where the DDPM predicted a single

k-space line at a time, 1-DDPM, and the scenario where the DDPM predicted a small set of

k-space lines at a time, ρ-DDPM. We found that both methods compete with the use of a

vanilla CNN but in particular, the 1-DDPM significantly outperformed the vanilla CNN. In

conclusion, this study has found that DDPMs present a performance gain in the problem of

self-supervised MR reconstruction.

Whilst we’ve found that DDPM models can be used in place of a vanilla Unet such as that

used in the control experiment of this study [177], the extension of this method to multiple

reconstruction steps (not diffusion steps) remains an open research question. Extending the

work of [177] (CNTL) to multiple reconstruction steps is straightforward and has been studied.

In the following sections, we proceed to investigate how multiple iterative reconstruction steps

can be incorporated with the DDPM and explain the limitations of current approaches.

7.4 Cascading reconstructions with DDPMs

[194] provide a method for incorporating DDPM guidance via manipulation of its latent space.

In particular, they borrow the concept of data consistency from decomposed, unrolled MRI

reconstruction with proximal operators. The closed form solution to the data consistency

proximal step is used to force the latent representation to hold true to the acquired data.

However, only the data consistency step is performed and without the context provided in an

unrolled reconstruction scheme where the data consistency term naturally arises.

The diffusion model is using an iterative scheme to reverse a stochastic process at each step,

not perform a direct gradient descent [110] or proximal operation towards the objective [93,

123, 177]. Instead, DDPMs can be viewed as a substitute for neural networks in unrolled
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optimisation schemes but with added probabilistic capabilities (e.g. for modelling noise, random

artifacts or motion corruption). This is opposed to the view that they are a new approach to

decomposing MRI reconstruction.

Incorporation of the data consistency in the closed form solution given in [194] does not by

itself mean that an iteration in a diffusion model is the equivalent of a proximal iteration or

gradient descent in unrolled networks. The training objective of the DDPM can be written as

performing a singular reconstruction step when conditioned on the undersampled data resulting

in a score function that operates the same as when the data consistency from [194] is applied

in an unconditioned setting (see section 7.4.1). The vanilla conditional DDPMs can be viewed

as performing a single reconstruction step but with the ability to also model random noise in

the target (which is off-loaded to the many diffusion steps in the model). This view can be

summarised as DDPMs performing an implicit reconstruction to predict the artifical diffusion

noise present in the latent variable (reconstruction step) whilst simultaneously modelling the

noise in the target (probabilistic step).

Figure 7.3 provides an illustration depicting the difference between the iterations in guided

DDPMs [194] and iterations used in unrolled schemes such as proximal-based reconstruction.

Another limitation in [194] is how data consistency is enforced. The work in [194] uses data

consistency at each intermediate step however their score prediction is conditioned on the entire

latent variable, including the parts where data has not been acquired and enforced (and there is

no conditioning on the acquired data). This means that the data gradients can either descend

to favour the data consistent parts or favour the parts where data does not exist.

Instead of proposing to perform MRI reconstruction solely of latent manipulation of DDPMs, we

wish to introduce the use of unrolled networks prior to a DDPM stage. In this study, we choose

a cascading network of data consistent Unets that perform a series of proximal operations

with the last being performed by the DDPM. When conditioned on an iterative N-cascade

unrolled NN, the end-to-end training of the DDPM with the conditioning NN simply adds a

powerful, probabilistic proximal operator as the final step of the decomposition as explained in

the following section.
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Figure 7.3: In this illustration black dots - centroids - represent the set of possible MRI
images. This includes patient images as well as other images such as images of noise
or phantoms. All centroids - MRI images - lie on a hyperplane depicted in red or grey.
Surrounding these centroids are hyperspheres that are related to the centroid image, x. The
surface of the hyperspheres represents the set of possible undersampled images, xu. The
volume in between the surface and centroid represent the set of possible reconstructions
of x given that accelerated MR reconstruction is an ill-posed problem. The green dot
represents a possible starting point for a traditional descent method to iteratively converge
towards the centroid x. The centroids ϵ are the starting positions of guided-DDPM’s
reverse diffusion process (ϵ ∼ N(0, I)). The blue arrows represent the Euler-Maruyama
descent to approximate the reverse diffusion process that guides it towards x. xt represents
a possible realisation of the t’th reverse diffusion step (of which there are many possibilities
represented by the grey sphere). From this, it can be understood that the descent method
tries to converge towards x. It perhaps reaches an inner sphere, Ψ, that represents MRI
data corruption which cannot be removed. DDPMs, without guidance, would converge
to any centroid that exists on the hyperplane. Guided DDPMs on the other hand are
descending towards x but only ever perform a single step into the hypersphere of x itself.
As a result, it can be interpreted as only ever being able to perform approximately a single
descent step towards x. However, since the descent is a stochastic process (DDPM), it
can reach a bigger range of different points within this hypersphere with each direction of
approach pointing towards a noisy realisation of the output image i.e. it can approach any
point of Ψ but it does not necessarily get as close to it as the traditional descent scheme.
If the traditional descent scheme for MRI optimisation can be combined with stochastic
gradient ascent for probabilistic modelling, then any point within Ψ itself can be reached
(or at least much closer).
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7.4.1 Score function decomposition for DDPM-based proximal re-

construction

In this section, we discuss an interpretation of DDPM-based accelerated MR image reconstruc-

tion and subsequently propose a novel, more direct approach to this task. As shown in section

2.4, the ELBO of DDPMs can be maximised by training with an L2 loss, equation (7.11), on

the score function for each latent representation in the diffusion process.

||ϵθ(xt, t)− ϵ||2, (7.11)

where θ are the network parameters, ϵθ is the weighted score function learned by the network, xt

is the latent representation being scored, t is the current step in the (reverse) diffusion process

and ϵ is the normally distributed noise that is used to formulate xt (at training time). For

reference, we repeat the formulation of xt in equation (7.12) but advise the reader to refer to

section 2.4 and [161] for more details on DDPMs.

xt =
√
α̃x+

√
1− α̃ϵ, (7.12)

where x is an image from the training set and α̃ is related to the DDPM variance schedule,

controlling the level of diffusion noise at each step of the diffusion process.

In order for the DDPM to generate images that are reconstructions of xu, we condition the

score function on xu. The loss function for the DDPM then becomes equation (7.16).

||ϵθ(xt, t, xu)− ϵ||2 (7.13)

In order to understand how the DDPM network, ϵθ, might use xu in the scoring, we decompose

the score function into two parts as shown in equation (7.14). In particular, we suggest that the

DDPM network implicitly learns a hidden reconstruction of xu which we denote as x̂h = f ′
θ′(xu),

where f ′ is a hidden, internal function of the DDPM network, ϵθ, and θ′ is a subset of θ.
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ϵθ(xt, t, xu) =
xt −

√
α̃x̂h√

1− α̃
+ ϵ′θ(xt, t, x̂h), (7.14)

where ϵ′θ is another hidden, internal function of the DDPM network that does the actual

learning of the reconstruction variability. In this decomposition, the first term represents a

crude estimate of the diffusion noise based on trying to reconstruct xu with a NN mapping,

f ′, and the second term represents the probabilistic modelling of the reconstruction such as

thermal noise, reconstruction possibilities and other variability present in the dataset.

By introducing x̂h as a hidden auxiliary variable, it is possible to understand the DDPM loss

(7.13) as minimising the loss between x̂h and the image x with the DDPM modelling the data

variability (and other uncertainty). Substituting (7.12) into equation (7.14) and then into the

loss (7.13) produces equation (7.15) which highlights this understanding.

||
√
α̃√

1− α̃
(x̂h − x) + ϵ′θ(xt, t, x̂h)||2 (7.15)

In other words, the DDPM is modelling the distribution of possible reconstructions after there

is a hidden reconstruction x̂h formed implicitly within the neural network, θ, (which in this

case is a U-net).

7.4.1.1 Extension to multiple proximal steps: decomposed score

function

Rather than conditioning the DDPM on simply xu through a single (internal/implicit) recon-

struction step, we can condition it on the output of an unrolled reconstruction network with N

iterations, x̂rec
N = fϕ(xu), where f is the reconstruction network and ϕ are its parameters. The

loss function for the DDPM then becomes equation (7.16).

||ϵθ(xt, t, x̂
rec
N )− ϵ||2 (7.16)
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Model: Exp (Samples) PSNR SSIM

Supervised: DDPM 35.55± 1.62 0.982± 0.007

Supervised: Baseline 34.99± 1.49 0.977± 0.006

Unsupervised: DDPM (Ns=10) 36.02± 2.13 0.980± 0.010

Unsupervised: Baseline 33.01± 1.12 0.964± 0.008

Unsupervised: DDPM (Ns=1) 35.03± 1.93 0.968± 0.010

Table 7.2: Results of our study using a direct approach for performing MRI reconstruction
with an iterative decomposition combined with the DDPM. The conditioning input to the
DDPM is an N-cascade of Unets with learnable data consistency with N = 5. The baseline
consisted of the same cascade but with N = 6. The supervised models are trained with fully
sampled labels with a vanilla data preparation - undersampled acquisition as input, fully
sampled label as output. The unsupervised models are trained using a data preparation
similar to [177] due to the lack of fully sampled data, described in sections 2 and 3.1. In
particular, it should be noted that the DDPM model only predicts a single k-space line at
a time making inference significantly slower than the baseline.

Similar to the case without f , sθ, may use the reconstruction x̂rec
N in the scoring and subse-

quently, implicitly optimise the network fϕ. Similar to (7.14), we decompose the score function

into two parts as shown in equation (7.17).

ϵθ(xt, t, x̂
rec
N ) =

xt −
√
α̃x̂rec

N√
1− α̃

ϵ′θ(xt, t, x̂
rec
N ) (7.17)

In this decomposition, optimising the score function would optimise the unrolled network f in

such a way that benefits the probabilistic modelling of ϵ′ and the overall scoring function ϵ.

This is a direct way to harness exist unrolled network architectures with DDPMs.

We had to use a gradient clipping value of 0.5 for the gradient norm due to the
√
1− α̃ term in

the denominator of equation (7.15) causing large, stochastic gradient spikes that led to unstable

training. U-nets are used for each cascade in the initial reconstruction model and they are also

used for the DDPM. Each U-net consists of 8.6M parameters each. The number of parameters

for our proposed method and control experiments are the same.
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7.4.2 Experimental results

Using an unrolled DC-CNN reconstruction network appended to the DDPM to form a condi-

tional DDPM model, we formulate a cascading DDPM. It should be noted that DC-CNN is

only one class of possible unrolled iterative networks that can be used — we choose DC-CNN

here for its simplicity but in principle any type of decomposition can be used such as a gradient

descent approach as in variational networks [110].

In our experiments, we use Nc = 5 cascades for the DC-CNN network. The output of this

network is used to condition the DDPM which consists of the same U-net from section 7.3. Each

cascade of the DC-CNN also uses the same U-net except without the embedding layer used for

conditioning with the diffusion index, t. In the case of the baseline network, we use Nc = 6

cascades for a fair comparison since the DDPM represents a proximal mapping/reconstruction

step.

The cascading DDPM is tested in both a supervised and unsupervised scenario with the results

shown in table 7.2. In the supervised case, we perform obtain a single reconstruction from

the DDPM for each example in the test set (Nit = 1) and use this in our comparisons against

the ground truth. In the unsupervised case, we show the quantitative results for a single

reconstruction from the DDPM as well as for Nit = 10 reconstructions from the DDPM which

are then subsequently averaged.

The cascading DDPM shows its benefit over the ablation baseline for an acceleration rate of

×4 in both the supervised and unsupervised scenario however more aggressive rates should be

investigated (see section 7.6 for more studies). Figures 7.4-7.11 show example reconstructions

of the cascading DDPM.

7.4.3 Discussion

The cascading DDPM approach to creating a higher fidelity MRI reconstructor has been shown

to work quantitatively however the cost in forward inference is much more expensive. The
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Figure 7.4: Example reconstruction from the UK BioBank dataset in the supervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. CNTL - PSNR: 34.84, SSIM: 0.979. DDPM - PSNR: 35.84, SSIM: 0.983.

Figure 7.5: Example reconstruction from the UK BioBank dataset in the supervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. CNTL - PSNR: 34.79, SSIM: 0.978. DDPM - PSNR: 35.38, SSIM: 0.982.

Figure 7.6: Example reconstruction from the UK BioBank dataset in the unsupervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. Only a single candidate reconstruction from the DDPM is used for comparison,
Ns = 1. CNTL - PSNR: 32.76, SSIM: 0.969. DDPM - PSNR: 34.98, SSIM: 0.976.
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Figure 7.7: Example reconstruction from the UK BioBank dataset in the unsupervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. Only a single candidate reconstruction from the DDPM is used for comparison,
Ns = 1. CNTL - PSNR: 33.51, SSIM: 0.970. DDPM - PSNR: 35.93, SSIM: 0.976.

Figure 7.8: Example reconstruction from the UK BioBank dataset in the unsupervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. Only a single candidate reconstruction from the DDPM is used for comparison,
Ns = 1. In this example, the DDPM produces a worse reconstruction compared with the
CNTL. CNTL - PSNR: 29.46, SSIM: 0.943. DDPM - PSNR: 28.10, SSIM: 0.933.

Figure 7.9: Example reconstruction from the UK BioBank dataset in the unsupervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a
DDPM. Multiple candidate reconstruction from the DDPM are sampled and then averaged
to produce a single reconstruction, Ns = 10. CNTL - PSNR: 32.03, SSIM: 0.954. DDPM
- PSNR: 34.46, SSIM: 0.972.
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Figure 7.10: Example reconstruction from the UK BioBank dataset in the unsupervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a
DDPM. Multiple candidate reconstruction from the DDPM are sampled and then averaged
to produce a single reconstruction, Ns = 10. CNTL - PSNR: 32.93, SSIM: 0.973. DDPM
- PSNR: 35.41, SSIM: 0.984.

Figure 7.11: Example reconstruction from the UK BioBank dataset in the unsupervised
setting. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a
DDPM. Multiple candidate reconstruction from the DDPM are sampled and then averaged
to produce a single reconstruction, Ns = 10. CNTL - PSNR: 32.76, SSIM: 0.969. DDPM
— PSNR: 36.16, SSIM: 0.984.
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forward inference of the baseline is a matter of milliseconds compared with the 30 seconds of

the cascading DDPM using an NVIDIA RTX 2080. This is due to the fact that the network

must be evaluated T = 1000 times before generating a candidate reconstruction. However,

it should be noted that reducing inference time is an active area of research with respect to

DDPMs. For example, [181] focuses on a contraction theory approach to show that a one-

step forward diffusion of an initial estimate can be used to significantly decrease the number

of required reverse diffusion steps [181, 43, 11]. We leave this possible research direction for

future work.

7.5 Handling and mitigating for corrupted data

In this section, the use of DDPMs to handle corruption acquisitions is investigated with fully-

sampled targets. This serves as a preliminary proof of concept for the scenario without fully-

sampled targets in section 7.6.

In the scenario where ground truth data does not exist due to the presence of noise in the

imaging targets, training a model to produce high fidelity reconstructions becomes increasingly

cumbersome. As mentioned in section 7.1, vanilla loss functions may not be appropriate training

objectives for noisy or corrupted targets. Instead, we propose off-loading the corruption to a

probabilistic model.

Generative models have been extensively studied in the deep learning and are still an active area

of research. The most popular flavours of generative models are GANs and WGANs. However,

it has been shown that whilst these models can produce high quality outputs (e.g. StyleGAN

[128]), the curse of dimensionality has masked their ability to learn simple distributions. [99]

studies the ability of GANs and WGANs to learn simple 1D parametric distributions. They

find that these flavour of GANs fail to reproduce the target distribution when sampling at test

time. They can generate samples around modal points of the distribution but fail to capture its

true properties. They do find a particular flavour of GAN called Maximum Mean Discrepancy

(MMD) GAN to learn the studied parametric distributions well [88]. However, the outputs
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of this model are not of high fidelity and would be inappropriate for our task where it is of

the utmost importance that the reconstructions remains faithful to the acquired data. [184]

shows that high fidelity images can be generated from DDPMs and are straight forward to train

alleviating the issues of mode-collapse and discriminator network tuning that GANs experience.

We propose using a DDPM as a generative model that learns the underlying distribution of the

data corruption in an accelerated acquisition setting. In this section, we focus on the scenario

of x4 undersampled acquisitions and fully-sampled imaging targets which both contain non-

Gaussian noise for the network to learn. This scenario is chosen as a sanity check for the use of

DDPMs to deal with corrupted data with non-Gaussian noise in the imaging target e.g. motion

corrupted data.

The choice of non-Gaussian distribution in this study is the Rician distribution. We choose

the Rician distribution since it is simple and has some known unbiased estimators [13]. Fur-

thermore, it also draws parallels to thermal noise that is typical in MRI scanners but only if

the imaging targets were magnitude images such as if training using DICOM images. With

DICOM images, raw data is discarded from the scanner such as with the DICOM data that

form part of the fastMRI challenge [120]. Magnitude images as targets have also been used

in deep learning networks such as in AUTOMAP [121]. One could also conceive a network

which is fed multi-coil data and subsequently designed to directly reconstruct the multi-coil

RSS image.

Furthermore, we do not keep the noise level in the target images constant. One of the assump-

tions of using an L2 to perform maximum likelihood estimation is that we have identically,

independently distributed normal errors. Not only have we changed the error from a normal

distribution to Rician, but we also vary the pixel-wise noise level between 0.001 to 0.01 with

the upper bound being large enough to generate surprisingly noisy-looking target images as

shown in Figure 7.12.

In this study, we use the magnitude images, M , from the UK BioBank study. The k-space

data is simulated using a synthetic phase with an added Gaussian noise to both the real and

imaginary components [116]. The magnitude image of this k-space data, M̃ , would subsequently
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have Rician-distributed noise as shown in Equation (7.18):

M̃ ∼ Rician (M,σ) (7.18)

where σ is the noise level and M is the magnitude image. Equation (7.19) shows how M̃ is

formed from Gaussian noise in the real and imaginary components of the complex image:

M̃ =
√
X2 + Y 2, (7.19)

where

X ∼ N
(︁
M cos θ, σ2

)︁
, Y ∼ N

(︁
M sin θ, σ2

)︁
, (7.20)

and θ is the phase of the image.

For the purposes of this preliminary investigation, the imaging targets for the network to learn

is the non-Gaussian noisy magnitude image M̃ . Whilst in practice we could train using the

complex valued images with Gaussian noise, the purpose of this investigation is to demonstrate

the ability of DDPMs to better mitigate for non-Gaussian noise.

One possible method of reconstructing an image with noise is to perform maximum likelihood

estimation of the parameters of the underlying distribution. This would require sampling many

noisy reconstructions from the DDPM and using them in an appropriate estimator.

In our case, we know that this distribution is Rician and hence can estimate the parameter of

interest, the image, from an estimator of the second moment which is unbiased [13]:

x̂c =
√︂
⟨fddpm(y)2⟩ − 2σ2, (7.21)

where fddpm is the output from the DDPM model and σ is an estimate of the noise level which

can be estimated empirically at inference since it isn’t required in the training of the generative
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model. (In terms of reconstruction for qualitative purposes such as visual inspection, knowledge

of σ is not necessary and can be set to zero).

7.5.1 Method

A DDPM was trained with heavily noisy data with examples demonstrating the effective size

of this noise in Figure 7.12. We use the magnitude images, M , from the UK BioBank study.

The k-space data is simulated using a synthetic phase with an added Gaussian noise to both

the real and imaginary components [116]. This results in a Rician noise in the imaging targets

of the network. At training time, the DDPM never sees a noiseless image and hence in this

sense, since we have no ground truth/noiseless labels, the task is unsupervised. At inference,

the DDPM model is sampled several times (N = 60) under the same input condition, the

undersampled, noisy acquisition. Using a-priori knowledge of the noise level, we use equation

(7.21) to obtain an estimate of the noiseless image.

We used the cascading DDPM model as presented in section 7.4. Since the prior DC-CNN

reconstruction network f use data consistency, we must prevent the noise parameter of DC-

CNN approaching λ −→ ∞ which would likely prevent the DDPM from learn the corruption

distribution at the acquired k-space points and thus would experience unconventional mode

collapse. We investigate two strategies to counter this mode collapse:

• Scenario 1: Double Corruption - We have acquired fully-sampled but noisy targets. The

training inputs are retrospectively undersampled images of the noisy fully-sampled acquisi-

tions which have an additional Gaussian noise manually added pixel wise so that at training

time, the learned denoising step does not force the data consistency to α = ∞ (mode col-

lapse). (See equation 7.3 for more details on data consistency). In the case of other data

corruptions, such as motion corruption, other strategies must be investigated to ensure that

we reasonably maximise the entropy of the total noise in the input images given the noisy

output.

• Scenario 2: Double Acquisition - This method requires two acquisitions of our data.
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We have acquired fully-sampled but noisy targets acquired twice sequentially. The training

inputs are retrospectively undersampled images of one of the noisy targets and then in the

target used in training is the other noisy acquisition. We hypothesise that this method would

perform better than in scenario 1 since we do not need to further corrupt our training with

noise. The case of α = ∞, i.e. mode collapse, is automatically avoided since the noise

component of the values between the two acquisitions at each k-space point are different

but drawn from the same noise distribution (Rician in this case). In the case of other data

corruptions, such as motion corruption, this would simply require collecting the data twice.

The baseline network is the DC-CNN reconstruction network with an extra cascade. The

magnitude image from the complex output of the DC-CNN is formed and trained with an L2

loss against the fully-sampled noisy magnitude image, M̃ .2

7.5.1.1 Faster sampling

Properties of the Rician distribution It should be noted that in areas of high SNR, the

Rician distribution is close to Gaussian. The mean, and thus modal point of this distribution

is
√︁

y2 + σ2. In areas of low SNR (e.g. zero), the distribution is Rayleigh distributed with a

mode of σ. If we have easy access to the statistical properties of the data-corruption distribution

learnt by the network, using the mode of this distribution, we can make estimates for y.

Extraction of modal point from DDPMs The DDPM distribution learned should be mostly

representative of the noise distribution in the data. Thus, the DDPM should be approximately

Rician distributed. At inference time, the output of the DDPM is generated through the

equation (2.21). This iterative inference uses the current latent point, calculates the score

function to move to an area of higher likelihood and performs a random (normally distributed)

step. We hypothesise that we can obtain an estimate of the mode of the DDPM by using

the modal points at each step of reverse diffusion process. The modal point of the normally

2It should be noted that conventionally, the loss would be calculated on the complex output since the noise
in the target would Gaussian and the network optimisation is more convex. However, the choice of training
objective here is justified due to the purpose of this preliminary investigation.
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Figure 7.12: Examples of the maximum amount of noise applied to images from the UK
BioBank. On the left is the ground truth magnitude image, middle shows the image with
the noise distribution applied, right shows the image with the noise distribution applied
twice (see Scenario 1).

distributed walk is simply zero. Thus by removing the random walk, we only need a single

sample of the DDPM (with zero walk) to estimate the mode of the distribution.

7.5.2 Results

We investigate the ability of the DDPM to reconstruct noiseless images under two methods of

sampling from the DDPM:

• Ns = 60 - We take 60 samples from the DDPM and use equation (7.21) to generate a noiseless

reconstruction

• Ns = 1 - We take 1 sample from the DDPM but set the volatility term in the reverse diffusion

SDE to zero in an effort to sample close to the modal point of the corruption distribution.
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Figure 7.13: Example reconstruction from the UK BioBank dataset with scenario 2 setup.
The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a DDPM.
Ns = 60 candidate reconstructions from the DDPM are sampled and then equation (7.21)
is used to generate a single reconstruction. CNTL - PSNR: 27.16, SSIM: 0.770. DDPM -
PSNR: 28.92, SSIM: 0.912.

Figure 7.14: Example reconstruction from the UK BioBank dataset with scenario 1 setup.
The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a DDPM.
Ns = 60 candidate reconstructions from the DDPM are sampled and then equation (7.21)
is used to generate a single reconstruction. CNTL - PSNR: 24.64, SSIM: 0.704. DDPM -
PSNR: 29.97, SSIM: 0.915.

This is described above in section 7.5.1.1.

Furthermore, the DDPM generates these reconstructions with acquisitions that contain max-

imum noise - examples of the inputs to the DDPM as shown in Figure 7.12. Table 7.3 and

Figures 7.13-7.20 shows evaluations of the cascading DDPM in the scenario of non-Gaussian

noise heavily corrupting the acquisition and target data.

7.5.3 Discussion

We show that noiseless reconstructions can be obtained with high qualitative and quantitative

performance. These noiseless estimates were facilitated by using a-priori knowledge of the

type of noise distribution which was Rician. In practice, a-priori knowledge of the noise level
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Figure 7.15: Example reconstruction from the UK BioBank dataset with scenario 1
setup. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. A single Ns = 1 candidate reconstruction from the DDPM is sampled using
the methodology from section 7.5.1.1. Subsequently, equation (7.21) is used to generate a
single reconstruction. CNTL - PSNR: 24.64, SSIM: 0.704. DDPM - PSNR: 28.45, SSIM:
0.878.

Figure 7.16: Example reconstruction from the UK BioBank dataset with scenario 2
setup. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. A single Ns = 1 candidate reconstruction from the DDPM is sampled using
the methodology from section 7.5.1.1. Subsequently, equation (7.21) is used to generate a
single reconstruction. CNTL - PSNR: 27.16, SSIM: 0.770. DDPM - PSNR: 27.81, SSIM:
0.842.

Figure 7.17: Example reconstruction from the UK BioBank dataset with scenario 2 setup.
The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a DDPM.
Ns = 60 candidate reconstructions from the DDPM are sampled and then equation (7.21)
is used to generate a single reconstruction. CNTL - PSNR: 26.75, SSIM: 0.658. DDPM -
PSNR: 29.58, SSIM: 0.907.
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Figure 7.18: Example reconstruction from the UK BioBank dataset with scenario 1 setup.
The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by a DDPM.
Ns = 60 candidate reconstructions from the DDPM are sampled and then equation (7.21)
is used to generate a single reconstruction. CNTL - PSNR: 24.09, SSIM: 0.587. DDPM -
PSNR: 30.48, SSIM: 0.893.

Figure 7.19: Example reconstruction from the UK BioBank dataset with scenario 1
setup. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. A single Ns = 1 candidate reconstruction from the DDPM is sampled using
the methodology from section 7.5.1.1. Subsequently, equation (7.21) is used to generate a
single reconstruction. CNTL - PSNR: 24.09, SSIM: 0.587. DDPM - PSNR: 29.09, SSIM:
0.872.

Figure 7.20: Example reconstruction from the UK BioBank dataset with scenario 2
setup. The CNTL is the DCCNN with Nc = 6 and the DDPM uses Nc = 5 followed by
a DDPM. A single Ns = 1 candidate reconstruction from the DDPM is sampled using
the methodology from section 7.5.1.1. Subsequently, equation (7.21) is used to generate a
single reconstruction. CNTL - PSNR: 26.81, SSIM: 0.657. DDPM - PSNR: 28.62, SSIM:
0.862.
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Model: Data (Samples) PSNR SSIM

DDPM: Double Corruption (N=60) 29.96± 0.80 0.907± 0.014

DDPM: Double Corruption (N=1) 28.32± 0.69 0.868± 0.014

Baseline: Double Corruption 24.57± 0.42 0.678± 0.065

DDPM: Double Acquisition (N=60) 29.04± 0.90 0.907± 0.014

DDPM: Double Acquisition (N=1) 28.13± 0.90 0.846± 0.021

Baseline: Double Acquisition 27.12± 0.44 0.750± 0.062

Table 7.3: Results when training with fully sampled acquisitions as targets but with a
high Rician noise in the targets and inputs. Here the DDPM models use N = 5 cascades
and the baseline models use N = 6 cascades. It can be seen here that the baseline performs
poorly against the DDPM-based models due to an inappropriate noise distribution (Rician)
in the target.

is difficult to obtain but with DDPMs, we can estimate it empirically by viewing the image

background of the second-moment estimator.

We hypothesised that scenario 1, ’Double Corruption’, would perform worse than in scenario

2, ’Double Acquisition’. In the case of the baseline, this is true for the aforementioned reasons.

However, for our proposed method, scenario 1 and 2 perform comparably which indicates that

our proposal for avoiding mode collapse is sufficient. It should be noted for unsupervised (not

fully sampled) MRI reconstruction, these scenarios are not required since in the unsupervised

DDPM, the target is not contained within the condition.

We note that formulation of an unbiased estimator for the noiseless image is only possible in

this study as we have a-priori knowledge of the noise present in the data. However, many

other types of noise are present in MRI data such as motion corruption. We presented the

use of deterministic sampling - using a single sample - to extract a modal point of the data

distribution that appears to mitigate for the data corruption without necessarily requiring the

use of an unbiased estimator (since the aim is to obtain an image for clinical use). We note

that the concept of deterministic sampling from DDPMs has been studied prior to this work

in the form of denoising diffusion implicit models (DDIMs; [168]).
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7.6 Application to fastMRI dataset

In this section, we combine the ideas and conclusions from the prior sections to consider the

case of accelerated Cartesian MRI reconstruction without fully-sampled training data in the

presence of thermal noise with real knee data from the fastMRI challenge, in both the single

and multi-coil scenario. Specifically, we focus on self-supervised data consistent decomposed

cascade DDPMs for the fastMRI dataset. The fastMRI dataset consists of more than 1500 knee

images from a variety of different scanners at 1.5T and 3T field strength using 15 coils and a

turbo-spin echo acquisition protocol. Information about the data can be found in [120].

The fastMRI dataset already contains an underlying non-identically distributed thermal noise

that our approach would mitigate for. The fastMRI dataset contains fully sampled k-space

hence we retrospectively generate unique undersampling masks for each subject in the dataset

mimicking the scenario whereby fully-sampled k-space data may not exist. The DDPM model

proposed never sees a fully-sampled image and yet one can generate one by estimating the

k-space line by line (such as in section 7.3).

Whilst the fastMRI is inherently a multi-coil acquisition, single coil acquisitions are simulated

using a linear combination of the coil acquisitions in a method from [175]. The fastMRI dataset

already includes this simulated single-coil signal.

The fastMRI dataset is well known for containing a noisy background where the RSS combina-

tion of coils has resulted in a near chi-squared distribution of noise (or Rayleigh in the single

coil case) [126]. The noise is also perceptible in the regions of interest in certain images in the

dataset. However, in other images, the noise is less visible. There may also be less obvious

noise in the form of motion corruption or scanner artefacts. Traditional losses may struggle to

handle the nature of this distribution of reasons mentioned in section 7.1.

The DDPM approach outlined in section 7.5 provides a convenient method of handling such

noisy data in order to obtain estimates of the true, noiseless image. In this aforementioned

section, the targets were fully sampled which meant specific data acquisition scenarios were
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Figure 7.21: Illustration of the DC2DDPM methodology which makes use of a decom-
posed score function.

devised to validate the use of DDPMs in the case of noisy data (section 7.5). This study takes

place in the unsupervised setting whereby fully-sampled targets do not exist. In section 7.3,

at training time, the target k-space line is exclusive of the input data to the DDPM model.

As a result, the 1-DDPM (with cascades) is naturally suited for use with noisy data in the

partially-sampled data setting.

It should be noted that in this study, the target may indeed have a normal noise but is not nec-

essarily identically distributed from one subject to the next. This provides another motivation

for using DDPMs for MRI reconstruction.

7.6.1 Experimental method

We use the same U-net as in previous sections with the explicit score decomposition from

section 7.4. That is to say, the cascade model prior to the DDPM learns the deterministic part

of the score function whilst the DDPM part learns the probabilistic intricacies. We refer to our

proposal model as the data-consistent decomposed cascade DDPM (DC2DDPM). This model

is illustrated in Figure 7.21.

We also made changes to accommodate for the multi-coil nature of part of the fastMRI data.

In the case of the prior cascade model, The coils of the data were the convolutional channel
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inputs and outputs as is the case with parallel coil networks (PCN) [140]. The DDPM model

subsequent to this were provided all channel outputs of the cascade model. However, the DDPM

model was only required to generate a single line of k-space for a single coil. The coil selection

of the DDPM was provided by appending the cascade output of the required coil to the input

to the DDPM.

It should also be noted that different images have varying amounts of thermal noise (section

7.5) as can be seen in Figure 7.22.

To perform forward inference with our method, we could extract multiple samples and use a

suitable estimator for our image reconstruction. However, due to the dimensionality of the

fastMRI images, we restrict the number of samples to a single inference step for each k-space

line by setting the noise at each reverse diffusion step to zero. This is an identical sampling

process to denoising diffusion implicit models (DDIMs) [168] and also has similarities to the

method outlined in section 7.5.1.1. We empirically find that the DDIM sampling process leads

to better quality reconstructions.

7.6.2 Results

We evaluated our models on the single coil and multi-coil fastMRI knee validation dataset.

We used 1000 examples which were each retrospectively undersampled with a variable-density

Gaussian-distributed mask. For the single coil case, we used an acceleration rate of x4 and for

the multi-coil case, we used an acceleration rate of x8. Figures 7.23-7.30 show some examples of

the outputs from the proposed DDPM with 5 cascades and a baseline with 6 cascading U-nets

based on the model from [177]3. The quantitative results are displayed in table 7.4.

3The loss for this baseline is on the complex image (Gaussian noise in target), not the magnitude image
(Rician noise in target) unlike in section 7.5.
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Figure 7.22: Examples of noisy images from the fastMRI dataset. In particular, note
that different images have different levels of noise.

Experiment PSNR ROI-PSNR SSIM ROI-SSIM

CNTL (SC;x4) (Yaman et al. 2019) 38.5± 5.1 37.9± 4.8 0.833± 0.106 0.848± 0.096

1-DC2DDPM (SC;x4) [Ours] 38.4± 5.4 37.5± 5.2 0.848± 0.106 0.850± 0.103

CNTL (MC;x8) (Yaman et al. 2019) 28.8± 5.8 29.1± 5.8 0.715± 0.149 0.750± 0.135

1-DC2DDPM (MC;x8) [Ours] 28.9± 5.4 29.0± 5.3 0.728± 0.150 0.751± 0.134

Difference:

1-DC2DDPM - CNTL (SC;x4) −0.12± 0.40 −0.43± 0.49 −0.015± 0.021 0.002± 0.018

1-DC2DDPM - CNTL (MC;x8) 0.14± 0.50 −0.03± 0.56 0.012± 0.009 0.002± 0.007

Table 7.4: Table of results using 100 test images. The CNTL experiment refers to the
model proposed in [177]. The PSNR and SSIM metrics are shown for the whole image
as well as for a central crop of the image in the region of interest (ROI). The last two
rows of the table show the average (and standard deviation) of the difference in PSNR and
SSIM calculated per example in the test set. The multi-coil results are inconclusive - we
were unable to reject the null hypothesis of greater 1-DC2DDPM performance over the
CNTL with a Wilcoxon signed-rank test giving p = 0.38. The single-coil results suggest
a quantitative advantage of the CNTL however we suggest that this is due to a lack of
gold-standard data for evaluation as discussed in section 7.6.2.
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Figure 7.23: Reconstruction of x4 undersampled fastMRI single-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (36.8, 0.848), (36.0, 0.843).

7.6.3 Discussion

For the single coil data, the results shown in Figures 7.23-7.26 are subjective. Quantitatively

from Table 7.4, it is clear that the DDPM does not outperform the baseline with a Wilcoxon

signed-rank test giving p = 0.49 to reject the null hypothesis. This is a surprising result

since qualitatively, the output reconstructions from the DDPM seem sharper and of a higher

fidelity than both of the baseline and the ground truth reference. It is likely that the data

corruption inherent in the fastMRI dataset itself leads to some image features becoming less

sharp and increasingly blurred. The DDPM model tries to learn this corruption and when the

modal sample is made from the DDPM, we actually recover the image without this corruption

even with the DDPM having never seen an uncorrupted sample. This is the case that was

hypothesised in section 7.5. Without better ground truth data, it is not possible to verify

this and hence we suggest that for future work, a study with several radiologist opinions is

conducted.
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Figure 7.24: Reconstruction of x4 undersampled fastMRI single-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (30.9, 0.660), (30.4, 0.662).

The fact that the quantitative results do not reflect the sharper DDPM images highlights a

number of problems in deep learning MRI reconstruction:

1. Loss functions in deep learning are currently somewhat misguided for the purpose of MRI

reconstruction. In the case of supervised, discriminative training [19], the question of suitable

loss functions becomes more complex with increasing image fidelity in the desired output.

This is particularly the case where the target contains several, complex imperfections. A

recent study using the fastMRI dataset explores the use of SSIM to optimise the output

reconstruction [140]. In similar scenarios, it may be the case that probabilistic models become

an increasingly more appropriate choice of reconstruction model.

2. No gold-standard ground truth data - The lack of this data makes it difficult to compare

different reconstruction models. This was noted in the fastMRI challenge 2019 [126]. In

reality, perfect ground truth data is never possible but the fastMRI data is particularly noisy

compared to other (smaller) MRI image datasets currently available to researchers such as
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Figure 7.25: Reconstruction of x4 undersampled fastMRI single-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (31.7, 0.658), (31.6, 0.682). We note here that while the
image features of the GT are more similar to that of the CNTL than in the DC2DDPM,
the DC2DDPM reconstruction seems far sharper than that of both the CNTL and GT.
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Figure 7.26: Reconstruction of x4 undersampled fastMRI single-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (33.8, 0.738), (33.2, 0.745).

certain image subsets from the UK BioBank study [150].

3. Evaluation metrics for MRI reconstruction need further study - The problem of image metrics

for MRI reconstruction evaluation is closely related to the above point of the lack of gold-

standard ground truth data. Issues with PSNR and SSIM as evaluation metrics have been

highlighted in studies by [126, 206]. This has also been highlighted in the computer vision

community [187, 46]. A recently proposed approach is the Video Multi-Method Assessment

Fusion (VMAF) method [92]. This was developed as a way to evaluate compression methods

for video data (TV and movies) by introducing opinion ratings of the end-user into the testing

pipeline. The idea is to use a combination of different evaluation metrics such as VIF (Visual

Information Fidelity; [25]) and DLM (Detail Loss Metric; [50]) in conjunction with an SVM

to assign weights to each metric which is then used as a predictor for the image quality as

viewed by an end-user.

In the case of the multi-coil data, we did not find significant improvement of the DDPM over
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Figure 7.27: Reconstruction of x8 undersampled fastMRI multi-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (30.6, 0.795), (30.7, 0.800).
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Figure 7.28: Reconstruction of x8 undersampled fastMRI multi-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (24.2, 0.643), (24.8, 0.650).
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Figure 7.29: Reconstruction of x8 undersampled fastMRI multi-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (35.3, 0.862), (34.9, 0.880).
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Figure 7.30: Reconstruction of x8 undersampled fastMRI multi-coil knee image. (PSNR,
SSIM) for CNTL and DC2DDPM: (19.2, 0.472), (20.3, 0.488).
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Figure 7.31: The plot of a validation metric against training step which ends at 350k
after 20 days of training. The metric used is the L2 loss of the cascade’s output prior to
the DDPM. It is clear that the network has not fully converged.

the baseline. We hypothesise that this is mainly due to insufficient training. Training the

single-coil DC2DDPM model took 20 times longer than that of the control. The multi-coil

DC2DDPM - which handles more difficult data that the single coil case - did not converge even

after 20 days of training on a 48GB NVIDIA RTX A6000. This is evident from Figure 7.31.

Since training is very slow, a different approach is required to speed up training time to allow

the network to fully converge.

Whilst the fidelity of the reconstructed multi-coil images are still competitive, further work is

required to solve the problem of parallel MR image reconstruction with DC2DDPMs.

7.6.4 Conclusion

In this study on the fastMRI dataset, our proposed DDPM model was able to successfully learn

a reconstruction model that seems to provide some interesting benefits over vanilla models.

In particular, we found that our proposed model provided a sharper reconstruction and has

potential to learn to mitigate imaging artefacts in the training data. Whilst the quantitative

metrics for our proposal were not favourable, we attribute this to the lack of gold-standard

ground truth data. Further investigation is required to ascertain the true quality of the image
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reconstruction which may require opinion ratings from a selection of radiologists and clinicians4.

For future work, we propose combining this work with that of the ME-DDPM from chapter 6 to

perform reconstruction for cases where fully-sampled data is not available for cine acquisitions

such as fetal CMR imaging.

7.7 Summary

In the first part of this study, we explored whether DDPMs could be used in the case where

fully-sampled data was not available at training time (section 7.3). This was later extended to

multiple reconstruction steps - not diffusion steps - which aim to directly solve MRI reconstruc-

tion optimisation problem (equation (7.1)) in section 7.4. Having successfully demonstrated

the higher reconstruction fidelity of DDPMs we considered their performance in the presence

of corrupted data. Using a non-Gaussian noise distribution to corrupt the image data in a

scenario where fully-sampled data is available at training time, we found large performance

gains by DDPMs over discriminative training (section 7.5). The efforts of all these studies were

combined to learn a reconstruction model on the noisy fastMRI dataset without fully-sampled

training data (retrospectively and uniquely applied undersampling masks). With this large

real-world data, we found that our proposal seemed to generate higher fidelity reconstructions

but performed worse on quantitative metrics. We leave it to future work to investigate whether

these reconstructions are perceptually better and of a greater clinical relevance.

The main disadvantage of DDPMs is that due to their iterative nature, their inference time is

extremely large (minimum of 30 seconds with our models if parallelised on a cluster of NVIDIA

RTX A6000 GPUs) but there are works in the computer vision community which aim to reduce

this burden [181].

4Note: we have created a visual comparison tool for this project to aid in the collection of opinion ratings
which can be found here: http://gavinseegoolam.co.uk/dc2ddpm/. The ‘Identifier’ field can be anything
(e.g. your name) and the login ‘token’ is ‘phdthesis’.

http://gavinseegoolam.co.uk/dc2ddpm/
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Conclusion

8.1 Summary of Thesis Achievements

In recent years, deep learning has shaken the world of medical imaging. During the course

in which the work in this thesis was undertaken, there has been an exponentially increasing

amount of published and accessible work in deep learning, computer vision and medicine, all of

which will have even further impact on medical imaging. In this thesis, we contribute to this

cause with the intention of creating smarter, more efficient tools for medical professionals.

Our biggest contribution comes in the form of accelerated MRI acquisition. Compressed sensing

was firstly formally introduced to the problem of MRI reconstruction in 2006 [36]. During these

16 years, incremental studies have far advanced the state of MRI reconstruction. We have now

introduced our own new methods, extending this initial breakthrough to realms which were not

conceivable back in 2006. Our first development was the motion exploiting convolutional neural

network or ME-CNN. This presents a way of performing dynamic MRI acquisitions 50 times

faster than in the conventional approach. For higher fidelity image reconstructions, we present

an adaption of this new method - ME-CNNv2 - which also had an interesting way to leverage

abundant segmentation data in the UK BioBank dataset at training time. This was later

dubbed the motion-segmentation exploiting convolutional neural network, the MSE-CNN.

Probabilistic deep learning is a subject that the research community is most familiar with for

its ability to generate wonderful new images that do not exist via GANs and more recently,

diffusion models [60, 128, 161, 184, 205]. We introduced probabilistic deep learning to the

180
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problem of motion-based dynamic MR reconstruction in the form of the motion exploiting de-

noising diffusion probabilistic model or ME-DDPM with extremely promising results. We

additionally proposed a new way to perform probabilistic deep learning unrolled reconstruction

without the loss of fidelity or hallucination that usually occurs with GANs due to complica-

tions involved in adversarial training [162, 108, 84]. These developments were combined into

an unsupervised framework called the data consistent decomposed cascade denoising diffusion

probabilistic model, DC2DDPM. In this method, training could take place without the need

for fully-sampled training data whilst simultaneously mitigating for data corruption in the data

acquisition process. Accurate fully-sampled training data is often problematic for certain imag-

ing scenarios such as fetal cardiac MR [156, 104] and corruption can take place in the form

of noise, motion from the patient or other scanner imperfections. This was evaluated on the

well-studied fastMRI knee with extremely promising results.

Stream-lining the diagnostic process is one of the ultimate aims of medical technology. This

typically involves the production of an image which a radiologist uses to aid in the diagnosis

of the underlying pathology. However, we questioned whether it’s possible to acquire the

MR data, skip the reconstruction phase and go straight to a diagnosis. Besides, in theory,

the reconstruction process doesn’t add any new information that wasn’t already present in

the acquired data. We demonstrated in our work in [124] that automated diagnostic report

generation can take place at accelerations as high as ×8 with noticeable drops in performance

only occurring beyond this aggressive acceleration.

We outline the achievements of this thesis:

• Introduction of motion into the deep learning MRI reconstruction process - We presented

the first deep learning method for generating reconstructions that exploit inter frame motion

from accelerated acquisitions, the ME-CNN. We note that [190] introduce a kt-FOCUSS-like

method for deep learning reconstruction however they require fully-sampled reference frames

that hinder the acquisition process and its acceleration.

• Use of segmentation data for dynamic image reconstruction - We are the first to introduce
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the concept of using segmentation data to ultimately generate better cine reconstructions.

This combined the ideas of the ME-CNN and the work by [114].

• Provided insight into how to manipulate diffusion models for dynamic MRI to generate higher

quality reconstructed cines

• Showed that much better performance can be achieved by diffusion models for MRI re-

construction by directly incorporating the unrolled MRI optimisation in the form of prior

proximal-based cascades.

• Provided a method for training diffusion models without fully sampled acquisition data. We

do not make use of fully-sampled targets and in this sense can be termed as probabilistic

unsupervised MRI reconstruction

• Showed that diffusion models can be leveraged to mitigate data corruption without any

modifications at training time even without ever seeing fully sampled data at training time.

Since perfect, non-noisy data is never seen at training time, the setup is also unsupervised

in another sense.

• Introduced a new method that decomposes diffusion models called DC2DDPM. This can

be trained unsupervised on accelerated, noisy data in a single coil and multi-coil setting to

generate corruption-mitigated reconstructions.

• Showed that automated diagnostic report generation can be achieved with undersampled

MRI data

8.2 Future Work

Whilst this thesis provides the foundations for potential breakthroughs in the field of MRI

acquisition, reconstruction and analysis, there is a plethora of further work that is to be con-

ducted if the proposals are to be deployed in a clinical setting. Domain adaption is a key issue

that is investigated in conjunction with the ME-CNN presented in this thesis. The study in

[134] shows good generalisation of MRI reconstruction from one anatomical region to another.
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However, for full clinical deployment, we require a better understanding of how artefacts in

the imaging process are handled by such algorithms. For example, do pathology hallucinations

occur in the presence of magnetic susceptibility artefacts? Further work is required to ensure

such issues in the MRI reconstruction process do not occur or are identifiable using statistical

techniques. In particular, this should be studied for our work on diffusion models, where there

is currently no existing literature pertaining to this. A notable mention is Stein’s unbiased risk

estimator (SURE) which has been a focus of recent work in the field of MRI reconstruction

[165]. In brief, SURE provides access to the accuracy of the reconstruction using theoretical

guarantees of the devised model [157].

Whilst the proposed ME-CNN exploits motion for the image reconstruction process, there isn’t

a mechanism to correct intra-frame motion. This can be considered from two perspectives: 1)

Mitigating for the problem of intra-frame motion in the target of the ME-CNN at training time

2) Intra-frame motion in the undersampled input data from rapid patient movement during

scanning. This is particularly of interest in fetal cardiac MR where the issue of motion is

severe and parallel imaging is typically employed. One possible method to partially alleviate

this problem with the ME-CNN is to train the network in an unsupervised fashion with real

highly undersampled acquisitions rather than motion-corrupted fully-sampled data. The main

complication that arises is training the motion estimators in an unsupervised fashion, however

one hypothesis is that this is possible by consecutively training the ME-CNN reconstruction

network and then training the motion network to use the end-reconstruction of the ME-CNN.

During training, the optimisation landscape will constantly evolve - as the motion estimate gets

better and better, so does the reconstruction.

In this thesis, we focused on Cartesian acquisitions however, for example in brain MRI, it is

well noted that radial trajectories lead to better reconstructions due to motion robustness and

greater incoherence for compressed sensing MRI [129, 18, 15]. The problem of deep learning

reconstruction for non-Cartesian acquisitions has previously been studied [139, 157, 174] and

we propose that this is an appropriate extension to the work presented in this thesis. We also

focus mainly on the proximal-based approach in this thesis where the proximal mapping is

off-loaded to a neural network. However, gradient descent variants for all work in this thesis
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are possible and should be investigated further.

Probabilistic deep learning for MRI reconstruction has vastly inferior literature compared with

its deterministic counter-part. Whilst this thesis produces methods that help bridge this gap,

the ME-DDPM presented in this thesis has a clear disadvantage in that the motion esti-

mate is not trained end-to-end with the reconstruction model. Furthermore, our work for the

DC2DDPM shows a way in which the ME-DDPM can be further improved by incorporation

of cascading. For future work, we propose incorporating a motion estimator in the cascades,

similar to the ME-CNN. At test time, the gradually refined motion estimate can be used in

the same way as in the ME-DDPM, to drive the latent representation closer towards the true

posterior.

8.3 Final Remark

In summary, whilst this thesis has advanced the community’s state of knowledge on the topic

of MRI reconstruction, there is a lot of future research required to advance towards clinical

deployment. Motion exploitation offers a lot of potential and there is now an appropriate

approach to probabilistic modelling for MRI reconstruction. We hope to continue to grow this

research going forward, working closely with other institutions, radiologists and clinicians.



Chapter A

Supplementary Material

A.1 Supplementary Material 1

Please find Supplementary Material 1 at http://gavinseegoolam.co.uk/wp/thesis_1-1/.

This is a video clip which depicts several cardiac cines in an accelerated setting. This is an

example of a retrospectively x16 accelerated acquisition which is then reconstructed with zero-

filling (left). The middle cine is the data sharing cine with a depth of 5 [93]. The right cine is

the x-DC-MAC generated using a crude motion estimate obtained using from an optical-flow

based autoencoder-like network (not a U-net). We use a crude motion estimate (and thus an

autoencoder-like network, not a U-net) to demonstrate that a perfect motion estimate is not

required to see the huge advantages of x-DC-MAC compared to DS found in DC-CNN.
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A.2 Supplementary Materials 2a-6c

These can be found at the following URLs:

• Supplementary Material 2a: http://gavinseegoolam.co.uk/wp/thesis_1-6a/.

• Supplementary Material 2b: http://gavinseegoolam.co.uk/wp/thesis_1-6b/.

• Supplementary Material 2c: http://gavinseegoolam.co.uk/wp/thesis_1-6c/.

• Supplementary Material 2d: http://gavinseegoolam.co.uk/wp/thesis_1-6d/.

• Supplementary Material 3a: http://gavinseegoolam.co.uk/wp/thesis_1-7a/.

• Supplementary Material 3b: http://gavinseegoolam.co.uk/wp/thesis_1-7b/.

• Supplementary Material 3c: http://gavinseegoolam.co.uk/wp/thesis_1-7c/.

• Supplementary Material 3d: http://gavinseegoolam.co.uk/wp/thesis_1-7d/.

• Supplementary Material 4a: http://gavinseegoolam.co.uk/wp/thesis_1-8a/.

• Supplementary Material 4b: http://gavinseegoolam.co.uk/wp/thesis_1-8b/.

• Supplementary Material 4c: http://gavinseegoolam.co.uk/wp/thesis_1-8c/.

• Supplementary Material 4d: http://gavinseegoolam.co.uk/wp/thesis_1-8d/.

• Supplementary Material 5a: http://gavinseegoolam.co.uk/wp/thesis_1-9a/.

• Supplementary Material 5b: http://gavinseegoolam.co.uk/wp/thesis_1-9b/.

• Supplementary Material 5c: http://gavinseegoolam.co.uk/wp/thesis_1-9c/.

• Supplementary Material 5d: http://gavinseegoolam.co.uk/wp/thesis_1-9d/.

• Supplementary Material 6a: http://gavinseegoolam.co.uk/wp/thesis_1-10a/.

• Supplementary Material 6b: http://gavinseegoolam.co.uk/wp/thesis_1-10b/.

• Supplementary Material 6c: http://gavinseegoolam.co.uk/wp/thesis_1-10c/.
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