3 research outputs found

    Motion Correction for Coronary Stent Reconstruction From Rotational X-ray Projection Sequences

    No full text
    International audienceThis paper presents a new method for 3-D tomographic reconstruction of stent in X-ray cardiac rotational angiography. The method relies on 2-D motion correction from two radiopaque markerballs located on each side of the stent. The two markerballs are on a guidewire and linked to the balloon, which is introduced into the artery. Once the balloon has been inflated, deflated, and the stent deployed, a rotational sequence around the patient is acquired. Under the assumption that the guidewire and the stent have the same 3-D motion during rotational acquisition, we developed an algorithm to correct cardiac stent motion on the 2-D X-ray projection images. The 3-D image of the deployed stent is then reconstructed with the Feldkamp algorithm using all the available projections. Although the correction is an approximation, we show that the intrinsic geometrical error of our method has no visual impact on the reconstruction when the 2-D markerball centers are exactly detected and the markerballs have the same 3-D motion as the stent. Qualitative and quantitative results on simulated sequences under different realistic conditions demonstrate the robustness of the method. Finally, results from animal data acquired on a rotational angiography device are presented

    Motion compensated iterative reconstruction for cardiac X-ray tomography

    Get PDF
    Within this Ph.D. project, three-dimensional reconstruction methods for moving objects (with a focus on the human heart) from cone-beam X-ray projections using iterative reconstruction algorithms were developed and evaluated. This project was carried in collaboration with the Digital Imaging Group of Philips Research Europe – Hamburg. In cardiac cone-beam computed tomography (CT) a large effort is continuously dedicated to increase scanning speed in order to minimize patient or organ motion during acquisition. In particular, motion causes severe artifacts such as blurring and streaks in tomographic images. While for a large class of applications the current scanning speed is sufficient, in cardiac CT image reconstruction improvements are still required. Whereas it is currently feasible to achieve stable image quality in the resting phases of the cardiac cycle, in the phase of fast motion data acquisition is too slow. A variety of algorithms to reduce or compensate for motion artifacts have been proposed in literature. Most of the correction methods address the calculation of consistent projection data belonging to the same motion state (gated CT reconstruction). Even if gated CT leads to better results, not only with respect to the processing time but also regarding the image quality, it is also limited in its temporal and spatial resolution due to the mechanical movement of the gantry. This can lead to motion blurring, especially in the phases of fast cardiac motion during the RR interval. A motion-compensated reconstruction method for CT can be used to improve the resolution of the reconstructed image and to suppress motion blurring. Iterative techniques are a promising approach to solve this problem, since no direct inversion methods are known for arbitrarily moving objects. In this work, we therefore introduced motion compensation into image reconstruction. In order to determine the unknown cardiac motion, 3 different cardiac-motion estimation methodologies were implemented. Visual and quantitative assessment of the method in a number of applications, including: phantoms; cardiac CT reconstructions; Region of Interest (ROI) CT reconstructions of left and right coronaries of several clinical patients, confirmed its potential
    corecore