347 research outputs found

    Evolving Modularity in Soft Robots Through an Embodied and Self-Organizing Neural Controller

    Get PDF
    Modularity is a desirable property for embodied agents, as it could foster their suitability to different domains by disassembling them into transferable modules that can be reassembled differently. We focus on a class of embodied agents known as voxel-based soft robots (VSRs). They are aggregations of elastic blocks of soft material; as such, their morphologies are intrinsically modular. Nevertheless, controllers used until now for VSRs act as abstract, disembodied processing units: Disassembling such controllers for the purpose of module transferability is a challenging problem. Thus, the full potential of modularity for VSRs still remains untapped. In this work, we propose a novel self-organizing, embodied neural controller for VSRs. We optimize it for a given task and morphology by means of evolutionary computation: While evolving, the controller spreads across the VSR morphology in a way that permits emergence of modularity. We experimentally investigate whether such a controller (i) is effective and (ii) allows tuning of its degree of modularity, and with what kind of impact. To this end, we consider the task of locomotion on rugged terrains and evolve controllers for two morphologies. Our experiments confirm that our self-organizing, embodied controller is indeed effective. Moreover, by mimicking the structural modularity observed in biological neural networks, different levels of modularity can be achieved. Our findings suggest that the self-organization of modularity could be the basis for an automatic pipeline for assembling, disassembling, and reassembling embodied agents

    Impact of Morphology Variations on Evolved Neural Controllers for Modular Robots

    Get PDF
    Modular robots, in particular those in which the modules are physically interchangeable, are suitable to be evolved because they allow for many different designs. Moreover, they can constitute ecosystems where “old” robots are disassembled and the resulting modules are composed together, either within an external assembling facility or by self-assembly procedures, to form new robots. However, in practical settings, self-assembly may result in morphologies that are slightly different from the expected ones: this may cause a detrimental misalignment between controller and morphology. Here, we characterize experimentally the robustness of neural controllers for Voxel-based Soft Robots, a kind of modular robots, with respect to small variations in the morphology. We employ evolutionary computation for optimizing the controllers and assess the impact of morphology variations along two axes: kind of morphology and size of the robot. Moreover, we quantify the advantage of performing a re-optimization of the controller for the varied morphology. Our results show that small variations in the morphology are in general detrimental for the performance of the evolved neural controller. Yet, a short re-optimization is often sufficient for aligning back the performance of the modified robot to the original one

    Harnessing the Power of Collective Intelligence: the Case Study of Voxel-based Soft Robots

    Get PDF
    The field of Evolutionary Robotics (ER) is concerned with the evolution of artificial agents---robots. Albeit groundbreaking, progress in the field has recently stagnated. In the research community, there is a strong feeling that a paradigm change has become necessary to disentangle ER. In particular, a solution has emerged from ideas from Collective Intelligence (CI). In CI---which has many relevant examples in nature---behavior emerges from the interaction between several components. In the absence of central intelligence, collective systems are usually more adaptable. In this thesis, we set out to harness the power of CI, focusing on the case study of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous and soft cubic blocks that actuate by altering their volume. We investigate two axes. First, the morphologies of VSRs are intrinsically modular and an ideal substrate for CI; nevertheless, controllers employed until now do not take advantage of such modularity. Our results prove that VSRs can truly be controlled by the CI of their modules. Second, we investigate the spatial and time scales of CI. In particular, we evolve a robot to detect its global body properties given only local information processing, and, in a different study, generalize better to unseen environmental conditions through Hebbian learning. We also consider how evolution and learning interact in VSRs. Looking beyond VSRs, we propose a novel soft robot formalism that more closely resembles natural tissues and blends local with global actuation.The field of Evolutionary Robotics (ER) is concerned with the evolution of artificial agents---robots. Albeit groundbreaking, progress in the field has recently stagnated. In the research community, there is a strong feeling that a paradigm change has become necessary to disentangle ER. In particular, a solution has emerged from ideas from Collective Intelligence (CI). In CI---which has many relevant examples in nature---behavior emerges from the interaction between several components. In the absence of central intelligence, collective systems are usually more adaptable. In this thesis, we set out to harness the power of CI, focusing on the case study of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous and soft cubic blocks that actuate by altering their volume. We investigate two axes. First, the morphologies of VSRs are intrinsically modular and an ideal substrate for CI; nevertheless, controllers employed until now do not take advantage of such modularity. Our results prove that VSRs can truly be controlled by the CI of their modules. Second, we investigate the spatial and time scales of CI. In particular, we evolve a robot to detect its global body properties given only local information processing, and, in a different study, generalize better to unseen environmental conditions through Hebbian learning. We also consider how evolution and learning interact in VSRs. Looking beyond VSRs, we propose a novel soft robot formalism that more closely resembles natural tissues and blends local with global actuation

    Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

    Full text link
    Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit-cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. We show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.Comment: 15 pages. This work has been accepted to IEEE Transactions on Robotics (2019

    Evolving Hebbian Learning Rules in Voxel-based Soft Robots

    Get PDF
    According to Hebbian theory, synaptic plasticity is the ability of neurons to strengthen or weaken the synapses among them in response to stimuli. It plays a fundamental role in the processes of learning and memory of biological neural networks. With plasticity, biological agents can adapt on multiple timescales and outclass artificial agents, the majority of which still rely on static Artificial Neural Network (ANN) controllers. In this work, we focus on Voxel-based Soft Robots (VSRs), a class of simulated artificial agents, composed as aggregations of elastic cubic blocks. We propose a Hebbian ANN controller where every synapse is associated with a Hebbian rule that controls the way the weight is adapted during the VSR lifetime. For a given task and morphology, we optimize the controller for the task of locomotion by evolving, rather than the weights, the parameters of the Hebbian rules. Our results show that the Hebbian controller is comparable, often better than a non-Hebbian baseline and that it is more adaptable to unforeseen damages. We also provide novel insights into the inner workings of plasticity and demonstrate that “true” learning does take place, as the evolved controllers improve over the lifetime and generalize well

    A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System

    Get PDF
    This paper describes the concept and design of a novel artificial hair receptor for the sensing system of micro intelligent robots such as a cricket-like jumping mini robot. The concept is inspired from the natural hair receptor of animals, also called cilium or filiform hair by different research groups, which is usually used as a vibration receptor or a flow detector by insects, mammals and fishes. The suspended fiber model is firstly built and the influence of scaling down is analyzed theoretically. The design of this artificial hair receptor is based on aligned suspended PVDF (polyvinylidene fluoride) fibers, manufactures with a novel method called thermo-direct drawing technique, and aligned suspended submicron diameter fibers are thus successfully fabricated on a flexible Kapton. In the post process step, some key problems such as separated electrodes deposition along with the fiber drawing direction and poling of micro/nano fibers to impart them with good piezoeffective activity have been presented. The preliminary validation experiments show that the artificial hair receptor has a reliable response with good sensibility to external pressure variation and, medium flow as well as its prospects in the application on sensing system of mini/micro bio-robots

    On the impact of body material properties on neuroevolution for embodied agents

    Get PDF
    Artificial agents required to perform non-trivial tasks are commonly controlled with Artificial Neural Networks (ANNs), which need to be carefully fine-tuned. This is where ANN optimization comes into play, often in the form of Neuroevolution (NE). Among artificial agents, the embodied ones, are characterized by a strong body-brain entanglement, i.e., a strong interdependence between the physical properties of the body and the controller. In this work, we aim at characterizing said interconnection, experimentally evaluating the impact body material properties have on NE for embodied agents. We consider the case of Voxel-based Soft Robots (VSRs), a class of simulated modular soft robots which achieve movement through the rhythmical contraction and expansion of their modules. We experiment varying several physical properties of VSRs and assess the effectiveness of the evolved controllers for the task of locomotion, together with their robustness and adaptability. Our results confirm the existence of a deep body-brain interrelationship for embodied agents, and highlight how NE fruitfully exploits the physical properties of the agents to give rise to a wide gamut of effective and adaptable behaviors
    • …
    corecore