296,558 research outputs found

    Evolution of polymer blend morphologies during extrusion in a flat die

    Get PDF
    The control of blend morphologies during process is of prime importance in order to predict the final properties of polymer blends. A coextrusion technique combined with static mixers was developed in order to smartly blend polymeric melts and to optimize the blend morphologies during the flow in static mixers [1]. The aim of this paper is to study the evolution of those blend morphologies during extrusion in a flat die. The effect of the viscosity ratio and the interfacial tension are also investigated. The experimental observations are confronted with numerical simulation results

    Secular Evolution of Galaxy Morphologies

    Get PDF
    Today we have numerous evidences that spirals evolve dynamically through various secular or episodic processes, such as bar formation and destruction, bulge growth and mergers, sometimes over much shorter periods than the standard galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to the known mass components provides new indications on the nature of dark matter in galaxies. The existence of large amounts of yet undetected dark gas appears as the most natural option. Bounds on the amount of dark stars can be given since their formation is mostly irreversible and requires obviously a same amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced with TeX source; To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    New Image Statistics for Detecting Disturbed Galaxy Morphologies at High Redshift

    Get PDF
    Testing theories of hierarchical structure formation requires estimating the distribution of galaxy morphologies and its change with redshift. One aspect of this investigation involves identifying galaxies with disturbed morphologies (e.g., merging galaxies). This is often done by summarizing galaxy images using, e.g., the CAS and Gini-M20 statistics of Conselice (2003) and Lotz et al. (2004), respectively, and associating particular statistic values with disturbance. We introduce three statistics that enhance detection of disturbed morphologies at high-redshift (z ~ 2): the multi-mode (M), intensity (I), and deviation (D) statistics. We show their effectiveness by training a machine-learning classifier, random forest, using 1,639 galaxies observed in the H band by the Hubble Space Telescope WFC3, galaxies that had been previously classified by eye by the CANDELS collaboration (Grogin et al. 2011, Koekemoer et al. 2011). We find that the MID statistics (and the A statistic of Conselice 2003) are the most useful for identifying disturbed morphologies. We also explore whether human annotators are useful for identifying disturbed morphologies. We demonstrate that they show limited ability to detect disturbance at high redshift, and that increasing their number beyond approximately 10 does not provably yield better classification performance. We propose a simulation-based model-fitting algorithm that mitigates these issues by bypassing annotation.Comment: 15 pages, 14 figures, accepted for publication in MNRA

    Evolution of Galaxy morphologies in Clusters

    Get PDF
    We have studied the evolution of galaxian morphologies from ground-based, good-seeing images of 9 clusters at z=0.09-0.25. The comparison of our data with those relative to higher redshift clusters (Dressler et al. 1997) allowed us to trace for the first time the evolution of the morphological mix at a look-back time of 2-4 Gyr, finding a dependence of the observed evolutionary trends on the cluster properties.Comment: 4 pages with 2 figures in Latex-Kluwer style. To be published in the proceedings of the Granada Euroconference "The Evolution of Galaxies.I-Observational Clues

    Wetting morphologies on randomly oriented fibers

    Full text link
    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: (1) a column morphology in which the liquid spreads between the fibers, (2) a mixed morphology where a drop grows at one end of the column or (3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid

    Capture numbers and islands size distributions in models of submonolayer surface growth

    Full text link
    The capture numbers entering the rate equations (RE) for submonolayer film growth are determined from extensive kinetic Monte Carlo (KMC) simulations for simple representative growth models yielding point, compact, and fractal island morphologies. The full dependence of the capture numbers on island size, and on both the coverage and the D/F ratio between the adatom diffusion coefficient D and deposition rate F is determined. Based on this information, the RE are solved to give the RE island size distribution (RE-ISD). The RE-ISDs are shown to agree well with the corresponding KMC-ISDs for all island morphologies. For compact morphologies, however, this agreement is only present for coverages smaller than about 5% due to a significantly increased coalescence rate compared to fractal morphologies. As found earlier, the scaled KMC-ISDs as a function of scaled island size approach, for fixed coverage, a limiting curve for D/F going to infinity. Our findings provide evidence that the limiting curve is independent of the coverage for point islands, while the results for compact and fractal island morphologies indicate a dependence on the coverage.Comment: 13 pages, 12 figure

    Pattern Formation in the Inhomogeneous Cooling State of Granular Fluids

    Get PDF
    We present results from comprehensive event-driven (ED) simulations of nonlinear pattern formation in freely-evolving granular gases. In particular, we focus on the the morphologies of density and velocity fields in the inhomogeneous cooling state (ICS). We emphasize the strong analogy between the ICS morphologies and pattern formation in phase ordering systems with a globally conserved order parameter.Comment: 11 pages, 4 figures. to appear in Europhys. Let
    corecore