42,708 research outputs found

    Image morphological processing

    Get PDF
    Mathematical Morphology with applications in image processing and analysis has been becoming increasingly important in today\u27s technology. Mathematical Morphological operations, which are based on set theory, can extract object features by suitably shaped structuring elements. Mathematical Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations, properties and fuzzy morphology are reviewed. Existing techniques for solving corner and edge detection are presented. A new approach to solve corner detection using regulated mathematical morphology is presented and is shown that it is more efficient in binary images than the existing mathematical morphology based asymmetric closing for corner detection. A new class of morphological operations called sweep mathematical morphological operations is developed. The theoretical framework for representation, computation and analysis of sweep morphology is presented. The basic sweep morphological operations, sweep dilation and sweep erosion, are defined and their properties are studied. It is shown that considering only the boundaries and performing operations on the boundaries can substantially reduce the computation. Various applications of this new class of morphological operations are discussed, including the blending of swept surfaces with deformations, image enhancement, edge linking and shortest path planning for rotating objects. Sweep mathematical morphology is an efficient tool for geometric modeling and representation. The sweep dilation/erosion provides a natural representation of sweep motion in the manufacturing processes. A set of grammatical rules that govern the generation of objects belonging to the same group are defined. Earley\u27s parser serves in the screening process to determine whether a pattern is a part of the language. Finally, summary and future research of this dissertation are provided

    Cardiac Cavity Segmentation in Echocardiography Using Triangle Equation

    Get PDF
    In this paper, cardiac cavity segmentation in echocardiography is proposed. The method uses triangle equation algorithms to detect and reconstruct the border. Prior to the application of both algorithms, some preprocessings have to be carried out. The first step is high boost filter to enhance high frequency component while still keeping the low frequency component. The second step is applying morphological and thresholding operations to eliminate noise and convert the image into binary image. The third step is negative laplacian filter to apply edge detector. The fourth step is region filter to eliminate small region. The last step is using triangle equation to detect and reconstruct the imprecise border. This technique is able to perform segmentation and detect border of cardiac cavity from echocardiographics sequences. Keywords: cardiac cavity, high boost filter, morphology, negative laplacian, region filter, and triangle equation

    An Improved Algorithm for Eye Corner Detection

    Full text link
    In this paper, a modified algorithm for the detection of nasal and temporal eye corners is presented. The algorithm is a modification of the Santos and Proenka Method. In the first step, we detect the face and the eyes using classifiers based on Haar-like features. We then segment out the sclera, from the detected eye region. From the segmented sclera, we segment out an approximate eyelid contour. Eye corner candidates are obtained using Harris and Stephens corner detector. We introduce a post-pruning of the Eye corner candidates to locate the eye corners, finally. The algorithm has been tested on Yale, JAFFE databases as well as our created database
    • …
    corecore