16 research outputs found

    Semifields, relative difference sets, and bent functions

    Full text link
    Recently, the interest in semifields has increased due to the discovery of several new families and progress in the classification problem. Commutative semifields play an important role since they are equivalent to certain planar functions (in the case of odd characteristic) and to modified planar functions in even characteristic. Similarly, commutative semifields are equivalent to relative difference sets. The goal of this survey is to describe the connection between these concepts. Moreover, we shall discuss power mappings that are planar and consider component functions of planar mappings, which may be also viewed as projections of relative difference sets. It turns out that the component functions in the even characteristic case are related to negabent functions as well as to Z4\mathbb{Z}_4-valued bent functions.Comment: Survey paper for the RICAM workshop "Emerging applications of finite fields", 09-13 December 2013, Linz, Austria. This article will appear in the proceedings volume for this workshop, published as part of the "Radon Series on Computational and Applied Mathematics" by DeGruyte

    (2^n,2^n,2^n,1)-relative difference sets and their representations

    Full text link
    We show that every (2n,2n,2n,1)(2^n,2^n,2^n,1)-relative difference set DD in Z4n\Z_4^n relative to Z2n\Z_2^n can be represented by a polynomial f(x)\in \F_{2^n}[x], where f(x+a)+f(x)+xaf(x+a)+f(x)+xa is a permutation for each nonzero aa. We call such an ff a planar function on \F_{2^n}. The projective plane Π\Pi obtained from DD in the way of Ganley and Spence \cite{ganley_relative_1975} is coordinatized, and we obtain necessary and sufficient conditions of Π\Pi to be a presemifield plane. We also prove that a function ff on \F_{2^n} with exactly two elements in its image set and f(0)=0f(0)=0 is planar, if and only if, f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for any x,y\in\F_{2^n}

    On isotopisms and strong isotopisms of commutative presemifields

    Full text link
    In this paper we prove that the P(q,ℓ)P(q,\ell) (qq odd prime power and ℓ>1\ell>1 odd) commutative semifields constructed by Bierbrauer in \cite{BierbrauerSub} are isotopic to some commutative presemifields constructed by Budaghyan and Helleseth in \cite{BuHe2008}. Also, we show that they are strongly isotopic if and only if q≡1(mod 4)q\equiv 1(mod\,4). Consequently, for each q≡−1(mod 4)q\equiv -1(mod\,4) there exist isotopic commutative presemifields of order q2ℓq^{2\ell} (ℓ>1\ell>1 odd) defining CCZ--inequivalent planar DO polynomials.Comment: References updated, pag. 5 corrected Multiplication of commutative LMPTB semifield

    On symplectic semifield spreads of PG(5,q2), q odd

    Get PDF
    We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG ( 5 , q2), for q2> 2 .38odd, whose associated semifield has center containing Fq. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2> 2 .38odd, with middle nucleus containing q2Fq2and center containing q Fq

    Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces

    Full text link
    In this paper we investigate partial spreads of H(2n−1,q2)H(2n-1,q^2) through the related notion of partial spread sets of hermitian matrices, and the more general notion of constant rank-distance sets. We prove a tight upper bound on the maximum size of a linear constant rank-distance set of hermitian matrices over finite fields, and as a consequence prove the maximality of extensions of symplectic semifield spreads as partial spreads of H(2n−1,q2)H(2n-1,q^2). We prove upper bounds for constant rank-distance sets for even rank, construct large examples of these, and construct maximal partial spreads of H(3,q2)H(3,q^2) for a range of sizes
    corecore