17,113 research outputs found

    Collaborative Representation based Classification for Face Recognition

    Full text link
    By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1- norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss how SRC works, and show that the collaborative representation mechanism used in SRC is much more crucial to its success of face classification. The SRC is a special case of collaborative representation based classification (CRC), which has various instantiations by applying different norms to the coding residual and coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the robustness of CRC to outlier facial pixels, while the l1 or l2 norm characterization of coding coefficient is related to the degree of discrimination of facial features. Extensive experiments were conducted to verify the face recognition accuracy and efficiency of CRC with different instantiations.Comment: It is a substantial revision of a previous conference paper (L. Zhang, M. Yang, et al. "Sparse Representation or Collaborative Representation: Which Helps Face Recognition?" in ICCV 2011

    A graphical model based solution to the facial feature point tracking problem

    Get PDF
    In this paper a facial feature point tracker that is motivated by applications such as human-computer interfaces and facial expression analysis systems is proposed. The proposed tracker is based on a graphical model framework. The facial features are tracked through video streams by incorporating statistical relations in time as well as spatial relations between feature points. By exploiting the spatial relationships between feature points, the proposed method provides robustness in real-world conditions such as arbitrary head movements and occlusions. A Gabor feature-based occlusion detector is developed and used to handle occlusions. The performance of the proposed tracker has been evaluated on real video data under various conditions including occluded facial gestures and head movements. It is also compared to two popular methods, one based on Kalman filtering exploiting temporal relations, and the other based on active appearance models (AAM). Improvements provided by the proposed approach are demonstrated through both visual displays and quantitative analysis

    Entropy Projection Curved Gabor with Random Forest and SVM for Face Recognition

    Get PDF
    In this work, we propose a workflow for face recognition under occlusion using the entropy projection from the curved Gabor filter, and create a representative and compact features vector that describes a face. Despite the reduced vector obtained by the entropy projection, it still presents opportunity for further dimensionality reduction. Therefore, we use a Random Forest classifier as an attribute selector, providing a 97% reduction of the original vector while keeping suitable accuracy. A set of experiments using three public image databases: AR Face, Extended Yale B with occlusion and FERET illustrates the proposed methodology, evaluated using the SVM classifier. The results obtained in the experiments show promising results when compared to the available approaches in the literature, obtaining 98.05% accuracy for the complete AR Face, 97.26% for FERET and 81.66% with Yale with 50% occlusion

    Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions

    Full text link
    A person's face discloses important information about their affective state. Although there has been extensive research on recognition of facial expressions, the performance of existing approaches is challenged by facial occlusions. Facial occlusions are often treated as noise and discarded in recognition of affective states. However, hand over face occlusions can provide additional information for recognition of some affective states such as curiosity, frustration and boredom. One of the reasons that this problem has not gained attention is the lack of naturalistic occluded faces that contain hand over face occlusions as well as other types of occlusions. Traditional approaches for obtaining affective data are time demanding and expensive, which limits researchers in affective computing to work on small datasets. This limitation affects the generalizability of models and deprives researchers from taking advantage of recent advances in deep learning that have shown great success in many fields but require large volumes of data. In this paper, we first introduce a novel framework for synthesizing naturalistic facial occlusions from an initial dataset of non-occluded faces and separate images of hands, reducing the costly process of data collection and annotation. We then propose a model for facial occlusion type recognition to differentiate between hand over face occlusions and other types of occlusions such as scarves, hair, glasses and objects. Finally, we present a model to localize hand over face occlusions and identify the occluded regions of the face.Comment: Accepted to International Conference on Affective Computing and Intelligent Interaction (ACII), 201

    Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion

    Full text link
    Facial landmark detection, head pose estimation, and facial deformation analysis are typical facial behavior analysis tasks in computer vision. The existing methods usually perform each task independently and sequentially, ignoring their interactions. To tackle this problem, we propose a unified framework for simultaneous facial landmark detection, head pose estimation, and facial deformation analysis, and the proposed model is robust to facial occlusion. Following a cascade procedure augmented with model-based head pose estimation, we iteratively update the facial landmark locations, facial occlusion, head pose and facial de- formation until convergence. The experimental results on benchmark databases demonstrate the effectiveness of the proposed method for simultaneous facial landmark detection, head pose and facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition, 201
    corecore