2,161 research outputs found

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat

    Inverse Problems Related to the Wiener and Steiner-Wiener Indices

    Get PDF
    In a graph, the generalized distance between multiple vertices is the minimum number of edges in a connected subgraph that contains these vertices. When we consider such distances between all subsets of kk vertices and take the sum, it is called the Steiner kk-Wiener index and has important applications in Chemical Graph Theory. In this thesis we consider the inverse problems related to the Steiner Wiener index, i.e. for what positive integers is there a graph with Steiner Wiener index of that value

    Steiner Distance in Product Networks

    Full text link
    For a connected graph GG of order at least 22 and SV(G)S\subseteq V(G), the \emph{Steiner distance} dG(S)d_G(S) among the vertices of SS is the minimum size among all connected subgraphs whose vertex sets contain SS. Let nn and kk be two integers with 2kn2\leq k\leq n. Then the \emph{Steiner kk-eccentricity ek(v)e_k(v)} of a vertex vv of GG is defined by ek(v)=max{dG(S)SV(G), S=k, and vS}e_k(v)=\max \{d_G(S)\,|\,S\subseteq V(G), \ |S|=k, \ and \ v\in S\}. Furthermore, the \emph{Steiner kk-diameter} of GG is sdiamk(G)=max{ek(v)vV(G)}sdiam_k(G)=\max \{e_k(v)\,|\, v\in V(G)\}. In this paper, we investigate the Steiner distance and Steiner kk-diameter of Cartesian and lexicographical product graphs. Also, we study the Steiner kk-diameter of some networks.Comment: 29 pages, 4 figure

    A Central Limit Theorem for the Poisson-Voronoi Approximation

    Get PDF
    For a compact convex set KK and a Poisson point process η\eta, the union of all Voronoi cells with a nucleus in KK is the Poisson-Voronoi approximation of KK. Lower and upper bounds for the variance and a central limit theorem for the volume of the Poisson-Voronoi approximation are shown. The proofs make use of so called Wiener-It\^o chaos expansions and the central limit theorem is based on a more abstract central limit theorem for Poisson functionals, which is also derived.Comment: 22 pages, modified reference

    Wiener Index and Remoteness in Triangulations and Quadrangulations

    Full text link
    Let GG be a a connected graph. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide asymptotic formulae for the maximum Wiener index of simple triangulations and quadrangulations with given connectivity, as the order increases, and make conjectures for the extremal triangulations and quadrangulations based on computational evidence. If σ(v)\overline{\sigma}(v) denotes the arithmetic mean of the distances from vv to all other vertices of GG, then the remoteness of GG is defined as the largest value of σ(v)\overline{\sigma}(v) over all vertices vv of GG. We give sharp upper bounds on the remoteness of simple triangulations and quadrangulations of given order and connectivity
    corecore