243,578 research outputs found

    Dynamics of the Chiral Magnetic Effect in a weak magnetic field

    Full text link
    We investigate the real-time dynamics of the chiral magnetic effect in quantum electrodynamics (QED) and quantum chromodynamics (QCD). We consider a field configuration of parallel (chromo)electric and (chromo)magnetic fields with a weak perpendicular electromagnetic magnetic field. The chiral magnetic effect induces an electromagnetic current along this perpendicular magnetic field, which we will compute using linear response theory. We discuss specific results for a homogeneous sudden switch-on and a pulsed (chromo)electric field in a static and homogeneous (chromo)magnetic field. Our methodology can be easily extended to more general situations. The results are useful for investigating the chiral magnetic effect with heavy ion collisions and with lasers that create strong electromagnetic fields. As a side result we obtain the rate of chirality production for massive fermions in parallel electric and magnetic fields that are static and homogeneous.Comment: 13 pages, 7 figures, revte

    Variational Approach for the Effects of Periodic Modulations on the Spectrum of Massless Dirac Fermion

    Full text link
    In the variational framework, we study the electronic energy spectrum of massless Dirac fermions of graphene subjected to one-dimensional oscillating magnetic and electrostatic fields centered around a constant uniform static magnetic field. We analyze the influence of the lateral periodic modulations in one direction, created by these oscillating electric and magnetic fields, on Dirac like Landau levels depending on amplitudes and periods of the field modulations. We compare our theoretical results with those found within the framework of non-degenerate perturbation theory. We found that the technique presented here yields energies lower than that obtained by the perturbation calculation, and thus gives more stable solutions for the electronic spectrum of massless Dirac fermion subjected to a magnetic field perpendicular to graphene layer under the influence of additional periodic potentials.Comment: 8 pages, 7 figure

    Probing the internal solar magnetic field through g-modes

    Get PDF
    The observation of g-mode candidates by the SoHO mission opens the possibility of probing the internal structure of the solar radiative zone (RZ) and the solar core more directly than possible via the use of the p-mode helioseismology data. We study the effect of rotation and RZ magnetic fields on g-mode frequencies. Using a self-consistent static MHD magnetic field model we show that a 1% g-mode frequency shift with respect to the Solar Seismic Model (SSeM) prediction, currently hinted in the GOLF data, can be obtained for magnetic fields as low as 300 kG, for current measured modes of radial order n=-20. On the other hand, we also argue that a similar shift for the case of the low order g-mode candidate (l=2, n=-3) frequencies can not result from rotation effects nor from central magnetic fields, unless these exceed 8 MG.Comment: 6 pages, 2 figures; final version to appear in MNRA

    Azimuthal electric field in a static rotationally symmetric (2+1)-dimensional spacetime

    Get PDF
    The fundamental metrics, which describe any static three-dimensional Einstein-Maxwell spacetime (depending only on a unique spacelike coordinate), are found. In this case there are only three independent components of the electromagnetic field: two for the vector electric field and one for the scalar magnetic field. It is shown that we can not have any superposition of these components of the electric and magnetic fields in this kind of static gravitational field. One of the electrostatic Einstein-Maxwell solutions is related to the magnetostatic solution by a duality mapping, while the second electrostatic gravitational field must be solved separately. Solutions induced by the more general (2+1)-Maxwell tensor on the static cylindrically symmetric spacetimes are studied and it is shown that all of them are also connected by duality mappings.Comment: 5 pages, Final versio

    One Loop Field Strengths of Charges and Dipoles on a Locally de Sitter Background

    Full text link
    We use the one loop vacuum polarization induced by scalar quantum electrodynamics to compute the electric and magnetic fields of point charges and magnetic dipoles on a locally de Sitter background. Our results are consistent with the physical picture of an inflating universe filling with a vast sea of charged particles as more and more virtual infrared scalar are ripped out of the vacuum. One consequence is that vacuum polarization quickly becomes nonperturbatively strong. Our computation employs the Schwinger-Keldysh effective field equations and is done in flat, conformal coordinates. Results are also obtained for static coordinates.Comment: 35 pages, no figures, uses LaTeX 2

    Different sensitivities of two optical magnetometers realized in the same experimental arrangement

    Get PDF
    In this article, operation of optical magnetometers detecting static (DC) and oscillating (AC) magnetic fields is studied and comparison of the devices is performed. To facilitate the comparison, the analysis is carried out in the same experimental setup, exploiting nonlinear magneto-optical rotation. In such a system, a control over static-field magnitude or oscillating-field frequency provides detection of strength of the DC or AC fields. Polarization rotation is investigated for various light intensities and AC-field amplitudes, which allows to determine optimum sensitivity to both fields. With the results, we demonstrate that under optimal conditions the AC magnetometer is about ten times more sensitive than its DC counterpart, which originates from different response of the atoms to the fields. Bandwidth of the magnetometers is also analyzed, revealing its different dependence on the light power. Particularly, we demonstrate that bandwidth of the AC magnetometer can be significantly increased without strong deterioration of the magnetometer sensitivity. This behavior, combined with the ability to tune the resonance frequency of the AC magnetometer, provide means for ultra-sensitive measurements of the AC field in a broad but spectrally-limited range, where detrimental role of static-field instability is significantly reduced.Comment: 9 pages, 6 figure

    Incremental Magnetoelastic Deformations, with Application to Surface Instability

    Get PDF
    In this paper the equations governing the deformations of infinitesimal (incremental) disturbances superimposed on finite static deformation fields involving magnetic and elastic interactions are presented. The coupling between the equations of mechanical equilibrium and Maxwell's equations complicates the incremental formulation and particular attention is therefore paid to the derivation of the incremental equations, of the tensors of magnetoelastic moduli and of the incremental boundary conditions at a magnetoelastic/vacuum interface. The problem of surface stability for a solid half-space under plane strain with a magnetic field normal to its surface is used to illustrate the general results. The analysis involved leads to the simultaneous resolution of a bicubic and vanishing of a 7x7 determinant. In order to provide specific demonstration of the effect of the magnetic field, the material model is specialized to that of a "magnetoelastic Mooney-Rivlin solid". Depending on the magnitudes of the magnetic field and the magnetoelastic coupling parameters, this shows that the half-space may become either more stable or less stable than in the absence of a magnetic field.Comment: 24 page
    corecore