3,525 research outputs found

    On-Line File Caching

    Full text link
    In the on-line file-caching problem problem, the input is a sequence of requests for files, given on-line (one at a time). Each file has a non-negative size and a non-negative retrieval cost. The problem is to decide which files to keep in a fixed-size cache so as to minimize the sum of the retrieval costs for files that are not in the cache when requested. The problem arises in web caching by browsers and by proxies. This paper describes a natural generalization of LRU called Landlord and gives an analysis showing that it has an optimal performance guarantee (among deterministic on-line algorithms). The paper also gives an analysis of the algorithm in a so-called ``loosely'' competitive model, showing that on a ``typical'' cache size, either the performance guarantee is O(1) or the total retrieval cost is insignificant.Comment: ACM-SIAM Symposium on Discrete Algorithms (1998

    Jointly Optimal Routing and Caching for Arbitrary Network Topologies

    Full text link
    We study a problem of fundamental importance to ICNs, namely, minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing.Comment: This is the extended version of the paper "Jointly Optimal Routing and Caching for Arbitrary Network Topologies", appearing in the 4th ACM Conference on Information-Centric Networking (ICN 2017), Berlin, Sep. 26-28, 201

    The K-Server Dual and Loose Competitiveness for Paging

    Full text link
    This paper has two results. The first is based on the surprising observation that the well-known ``least-recently-used'' paging algorithm and the ``balance'' algorithm for weighted caching are linear-programming primal-dual algorithms. This observation leads to a strategy (called ``Greedy-Dual'') that generalizes them both and has an optimal performance guarantee for weighted caching. For the second result, the paper presents empirical studies of paging algorithms, documenting that in practice, on ``typical'' cache sizes and sequences, the performance of paging strategies are much better than their worst-case analyses in the standard model suggest. The paper then presents theoretical results that support and explain this. For example: on any input sequence, with almost all cache sizes, either the performance guarantee of least-recently-used is O(log k) or the fault rate (in an absolute sense) is insignificant. Both of these results are strengthened and generalized in``On-line File Caching'' (1998).Comment: conference version: "On-Line Caching as Cache Size Varies", SODA (1991

    On Randomized Memoryless Algorithms for the Weighted kk-server Problem

    Full text link
    The weighted kk-server problem is a generalization of the kk-server problem in which the cost of moving a server of weight βi\beta_i through a distance dd is βi⋅d\beta_i\cdot d. The weighted server problem on uniform spaces models caching where caches have different write costs. We prove tight bounds on the performance of randomized memoryless algorithms for this problem on uniform metric spaces. We prove that there is an αk\alpha_k-competitive memoryless algorithm for this problem, where αk=αk−12+3αk−1+1\alpha_k=\alpha_{k-1}^2+3\alpha_{k-1}+1; α1=1\alpha_1=1. On the other hand we also prove that no randomized memoryless algorithm can have competitive ratio better than αk\alpha_k. To prove the upper bound of αk\alpha_k we develop a framework to bound from above the competitive ratio of any randomized memoryless algorithm for this problem. The key technical contribution is a method for working with potential functions defined implicitly as the solution of a linear system. The result is robust in the sense that a small change in the probabilities used by the algorithm results in a small change in the upper bound on the competitive ratio. The above result has two important implications. Firstly this yields an αk\alpha_k-competitive memoryless algorithm for the weighted kk-server problem on uniform spaces. This is the first competitive algorithm for k>2k>2 which is memoryless. Secondly, this helps us prove that the Harmonic algorithm, which chooses probabilities in inverse proportion to weights, has a competitive ratio of kαkk\alpha_k.Comment: Published at the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013

    Joint Service Placement and Request Routing in Multi-cell Mobile Edge Computing Networks

    Full text link
    The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers.Comment: IEEE Infocom 201

    An Efficient Coded Multicasting Scheme Preserving the Multiplicative Caching Gain

    Full text link
    Coded multicasting has been shown to be a promis- ing approach to significantly improve the caching performance of content delivery networks with multiple caches downstream of a common multicast link. However, achievable schemes proposed to date have been shown to achieve the proved order-optimal performance only in the asymptotic regime in which the number of packets per requested item goes to infinity. In this paper, we first extend the asymptotic analysis of the achievable scheme in [1], [2] to the case of heterogeneous cache sizes and demand distributions, providing the best known upper bound on the fundamental limiting performance when the number of packets goes to infinity. We then show that the scheme achieving this upper bound quickly loses its multiplicative caching gain for finite content packetization. To overcome this limitation, we design a novel polynomial-time algorithm based on random greedy graph- coloring that, while keeping the same finite content packetization, recovers a significant part of the multiplicative caching gain. Our results show that the order-optimal coded multicasting schemes proposed to date, while useful in quantifying the fundamental limiting performance, must be properly designed for practical regimes of finite packetization.Comment: 6 pages, 7 figures, Published in Infocom CNTCV 201
    • …
    corecore