3,820 research outputs found

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge

    Full text link
    This paper summarizes the AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone which was held between March 23, and May 15, 2017 at the Knowledge Pit platform. We briefly describe the scope and background of this competition in the context of a more general project related to the development of an AI engine for video games, called Grail. We also discuss the outcomes of this challenge and demonstrate how predictive models for the assessment of player's winning chances can be utilized in a construction of an intelligent agent for playing Hearthstone. Finally, we show a few selected machine learning approaches for modeling state and action values in Hearthstone. We provide evaluation for a few promising solutions that may be used to create more advanced types of agents, especially in conjunction with Monte Carlo Tree Search algorithms.Comment: Federated Conference on Computer Science and Information Systems, Prague (FedCSIS-2017) (Prague, Czech Republic

    Biasing MCTS with Features for General Games

    Get PDF
    This paper proposes using a linear function approximator, rather than a deep neural network (DNN), to bias a Monte Carlo tree search (MCTS) player for general games. This is unlikely to match the potential raw playing strength of DNNs, but has advantages in terms of generality, interpretability and resources (time and hardware) required for training. Features describing local patterns are used as inputs. The features are formulated in such a way that they are easily interpretable and applicable to a wide range of general games, and might encode simple local strategies. We gradually create new features during the same self-play training process used to learn feature weights. We evaluate the playing strength of an MCTS player biased by learnt features against a standard upper confidence bounds for trees (UCT) player in multiple different board games, and demonstrate significantly improved playing strength in the majority of them after a small number of self-play training games.Comment: Accepted at IEEE CEC 2019, Special Session on Games. Copyright of final version held by IEE

    Ensemble decision systems for general video game playing

    Get PDF
    Ensemble Decision Systems offer a unique form of decision making that allows a collection of algorithms to reason together about a problem. Each individual algorithm has its own inherent strengths and weaknesses, and often it is difficult to overcome the weaknesses while retaining the strengths. Instead of altering the properties of the algorithm, the Ensemble Decision System augments the performance with other algorithms that have complementing strengths. This work outlines different options for building an Ensemble Decision System as well as providing analysis on its performance compared to the individual components of the system with interesting results, showing an increase in the generality of the algorithms without significantly impeding performance.Comment: 8 Pages, Accepted at COG201

    Improved Reinforcement Learning with Curriculum

    Full text link
    Humans tend to learn complex abstract concepts faster if examples are presented in a structured manner. For instance, when learning how to play a board game, usually one of the first concepts learned is how the game ends, i.e. the actions that lead to a terminal state (win, lose or draw). The advantage of learning end-games first is that once the actions which lead to a terminal state are understood, it becomes possible to incrementally learn the consequences of actions that are further away from a terminal state - we call this an end-game-first curriculum. Currently the state-of-the-art machine learning player for general board games, AlphaZero by Google DeepMind, does not employ a structured training curriculum; instead learning from the entire game at all times. By employing an end-game-first training curriculum to train an AlphaZero inspired player, we empirically show that the rate of learning of an artificial player can be improved during the early stages of training when compared to a player not using a training curriculum.Comment: Draft prior to submission to IEEE Trans on Games. Changed paper slightl

    Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar

    Get PDF
    Automatic machine learning is an important problem in the forefront of machine learning. The strongest AutoML systems are based on neural networks, evolutionary algorithms, and Bayesian optimization. Recently AlphaD3M reached state-of-the-art results with an order of magnitude speedup using reinforcement learning with self-play. In this work we extend AlphaD3M by using a pipeline grammar and a pre-trained model which generalizes from many different datasets and similar tasks. Our results demonstrate improved performance compared with our earlier work and existing methods on AutoML benchmark datasets for classification and regression tasks. In the spirit of reproducible research we make our data, models, and code publicly available.Comment: ICML Workshop on Automated Machine Learnin
    corecore