579,387 research outputs found

    Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations

    Full text link
    The Euler-Maruyama scheme is known to diverge strongly and numerically weakly when applied to nonlinear stochastic differential equations (SDEs) with superlinearly growing and globally one-sided Lipschitz continuous drift coefficients. Classical Monte Carlo simulations do, however, not suffer from this divergence behavior of Euler's method because this divergence behavior happens on rare events. Indeed, for such nonlinear SDEs the classical Monte Carlo Euler method has been shown to converge by exploiting that the Euler approximations diverge only on events whose probabilities decay to zero very rapidly. Significantly more efficient than the classical Monte Carlo Euler method is the recently introduced multilevel Monte Carlo Euler method. The main observation of this article is that this multilevel Monte Carlo Euler method does - in contrast to classical Monte Carlo methods - not converge in general in the case of such nonlinear SDEs. More precisely, we establish divergence of the multilevel Monte Carlo Euler method for a family of SDEs with superlinearly growing and globally one-sided Lipschitz continuous drift coefficients. In particular, the multilevel Monte Carlo Euler method diverges for these nonlinear SDEs on an event that is not at all rare but has probability one. As a consequence for applications, we recommend not to use the multilevel Monte Carlo Euler method for SDEs with superlinearly growing nonlinearities. Instead we propose to combine the multilevel Monte Carlo method with a slightly modified Euler method. More precisely, we show that the multilevel Monte Carlo method combined with a tamed Euler method converges for nonlinear SDEs with globally one-sided Lipschitz continuous drift coefficients and preserves its strikingly higher order convergence rate from the Lipschitz case.Comment: Published in at http://dx.doi.org/10.1214/12-AAP890 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Off-diagonal Wave Function Monte Carlo Studies of Hubbard Model I

    Full text link
    We propose a Monte Carlo method, which is a hybrid method of the quantum Monte Carlo method and variational Monte Carlo theory, to study the Hubbard model. The theory is based on the off-diagonal and the Gutzwiller type correlation factors which are taken into account by a Monte Carlo algorithm. In the 4x4 system our method is able to reproduce the exact results obtained by the diagonalization. An application is given to investigate the half-filled band case of two-dimensional square lattice. The energy is favorably compared with quantum Monte Carlo data.Comment: 9 pages, 11 figure

    Metropolis Methods for Quantum Monte Carlo Simulations

    Full text link
    Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, cluster methods for lattice models, the penalty method for coupled electron-ionic systems and the Bayesian analysis of imaginary time correlation functions.Comment: Proceedings of "Monte Carlo Methods in the Physical Sciences" Celebrating the 50th Anniversary of the Metropolis Algorith

    Transition Matrix Monte Carlo Method

    Full text link
    We analyze a new Monte Carlo method which uses transition matrix in the space of energy. This method gives an efficient reweighting technique. The associated artificial dynamics is a constrained random walk in energy, producing the result that correlation time is proportional to the specific heat.Comment: LaTeX, 8 pages, 1 figur

    Self-Learning Monte Carlo Method

    Get PDF
    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of general and efficient update algorithm for large size systems close to phase transition or with strong frustrations, for which local updates perform badly. In this work, we propose a new general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup.Comment: add more refs and correct some typo

    Transition matrix Monte Carlo method for quantum systems

    Full text link
    We propose an efficient method for Monte Carlo simulation of quantum lattice models. Unlike most other quantum Monte Carlo methods, a single run of the proposed method yields the free energy and the entropy with high precision for the whole range of temperature. The method is based on several recent findings in Monte Carlo techniques, such as the loop algorithm and the transition matrix Monte Carlo method. In particular, we derive an exact relation between the DOS and the expectation value of the transition probability for quantum systems, which turns out to be useful in reducing the statistical errors in various estimates.Comment: 6 pages, 4 figure

    Numerical approximation of statistical solutions of scalar conservation laws

    Full text link
    We propose efficient numerical algorithms for approximating statistical solutions of scalar conservation laws. The proposed algorithms combine finite volume spatio-temporal approximations with Monte Carlo and multi-level Monte Carlo discretizations of the probability space. Both sets of methods are proved to converge to the entropy statistical solution. We also prove that there is a considerable gain in efficiency resulting from the multi-level Monte Carlo method over the standard Monte Carlo method. Numerical experiments illustrating the ability of both methods to accurately compute multi-point statistical quantities of interest are also presented
    corecore