4 research outputs found

    Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    Full text link
    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presentation of rewrite rules as well as the involved order, and using results for well-structured transition systems. We apply the resulting procedure to the analysis of the Distributed Dining Philosophers protocol on an arbitrary network structure.Comment: Extended version of a submittion accepted at RP'14 Worksho

    Monotonic Abstraction for Programs with Multiply-Linked Structures

    No full text
    Foundations of Computer Science. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the published paper: Abdulla, P., Cederberg, J., Vojnar, T. (2013) "Monotonic abstraction for programs with multiply-linked structures&quot

    Monotonic Abstraction for Programs with Multiply-Linked Structures

    No full text
    Abstract. We investigate the use of monotonic abstraction and backward reachability analysis as means of performing shape analysis on programs with multiply pointed structures. By encoding the heap as a vertex- and edge-labeled graph, we can model the low level behaviour exhibited by programs written in the C programming language. Using the notion of signatures, which are predicates that define sets of heaps, we can check properties such as absence of null pointer dereference and shape invariants. We report on the results from running a prototype based on the method on several programs such as insertion into and merging of doubly-linked lists.

    Monotonic abstraction for programs with multiply-linked structures

    No full text
    We investigate the use of monotonic abstraction and backward reachability analysis as means of performing shape analysis on programs with multiply pointed structures. By encoding the heap as a vertex- and edge-labeled graph, we can model the low level behaviour exhibited by programs written in the C programming language. Using the notion of signatures, which are predicates that define sets of heaps, we can check properties such as absence of null pointer dereference and shape invariants. We report on the results from running a prototype based on the method on several programs such as insertion into and merging of doubly-linked lists.UPMAR
    corecore