7,499 research outputs found

    Nearly-linear monotone paths in edge-ordered graphs

    Get PDF
    How long a monotone path can one always find in any edge-ordering of the complete graph Kn? This appealing question was first asked by Chv´atal and Koml´os in 1971, and has since attracted the attention of many researchers, inspiring a variety of related problems. The prevailing conjecture is that one can always find a monotone path of linear length, but until now the best known lower bound was n 2/3−o(1). In this paper we almost close this gap, proving that any edge-ordering of the complete graph contains a monotone path of length n 1−o(1

    Nearly-linear monotone paths in edge-ordered graphs

    Get PDF
    How long a monotone path can one always find in any edge-ordering of the complete graph Kn? This appealing question was first asked by Chvátal and Komlós in 1971, and has since attracted the attention of many researchers, inspiring a variety of related problems. The prevailing conjecture is that one can always find a monotone path of linear length, but until now the best known lower bound was n^2/3−o(1). In this paper we almost close this gap, proving that any edge-ordering of the complete graph contains a monotone path of length n^1−o(1)

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    Relating Graph Thickness to Planar Layers and Bend Complexity

    Get PDF
    The thickness of a graph G=(V,E)G=(V,E) with nn vertices is the minimum number of planar subgraphs of GG whose union is GG. A polyline drawing of GG in R2\mathbb{R}^2 is a drawing Γ\Gamma of GG, where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and layer complexities are two important aesthetics of such a drawing. The bend complexity of Γ\Gamma is the maximum number of bends per edge in Γ\Gamma, and the layer complexity of Γ\Gamma is the minimum integer rr such that the set of polygonal chains in Γ\Gamma can be partitioned into rr disjoint sets, where each set corresponds to a planar polyline drawing. Let GG be a graph of thickness tt. By F\'{a}ry's theorem, if t=1t=1, then GG can be drawn on a single layer with bend complexity 00. A few extensions to higher thickness are known, e.g., if t=2t=2 (resp., t>2t>2), then GG can be drawn on tt layers with bend complexity 2 (resp., 3n+O(1)3n+O(1)). However, allowing a higher number of layers may reduce the bend complexity, e.g., complete graphs require Θ(n)\Theta(n) layers to be drawn using 0 bends per edge. In this paper we present an elegant extension of F\'{a}ry's theorem to draw graphs of thickness t>2t>2. We first prove that thickness-tt graphs can be drawn on tt layers with 2.25n+O(1)2.25n+O(1) bends per edge. We then develop another technique to draw thickness-tt graphs on tt layers with bend complexity, i.e., O(2tn1(1/β))O(\sqrt{2}^{t} \cdot n^{1-(1/\beta)}), where β=2(t2)/2\beta = 2^{\lceil (t-2)/2 \rceil }. Previously, the bend complexity was not known to be sublinear for t>2t>2. Finally, we show that graphs with linear arboricity kk can be drawn on kk layers with bend complexity 3(k1)n(4k2)\frac{3(k-1)n}{(4k-2)}.Comment: A preliminary version appeared at the 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016

    Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

    Full text link
    We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered Level Planarity is motivated by connections to several other graph drawing problems. Geodesic Planarity asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a polygonal path composed of line segments with two adjacent directions from a given set SS of directions symmetric with respect to the origin. Our results on Ordered Level Planarity imply NPNP-hardness for any SS with S4|S|\ge 4 even if the given graph is a matching. Katz, Krug, Rutter and Wolff claimed that for matchings Manhattan Geodesic Planarity, the case where SS contains precisely the horizontal and vertical directions, can be solved in polynomial time [GD'09]. Our results imply that this is incorrect unless P=NPP=NP. Our reduction extends to settle the complexity of the Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer and \v{S}tefankovi\v{c}. Ordered Level Planarity turns out to be a special case of T-Level Planarity, Clustered Level Planarity and Constrained Level Planarity. Thus, our results strengthen previous hardness results. In particular, our reduction to Clustered Level Planarity generates instances with only two non-trivial clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Erdos-Szekeres-type theorems for monotone paths and convex bodies

    Get PDF
    For any sequence of positive integers j_1 < j_2 < ... < j_n, the k-tuples (j_i,j_{i + 1},...,j_{i + k-1}), i=1, 2,..., n - k+1, are said to form a monotone path of length n. Given any integers n\ge k\ge 2 and q\ge 2, what is the smallest integer N with the property that no matter how we color all k-element subsets of [N]=\{1,2,..., N\} with q colors, we can always find a monochromatic monotone path of length n? Denoting this minimum by N_k(q,n), it follows from the seminal 1935 paper of Erd\H os and Szekeres that N_2(q,n)=(n-1)^q+1 and N_3(2,n) = {2n -4\choose n-2} + 1. Determining the other values of these functions appears to be a difficult task. Here we show that 2^{(n/q)^{q-1}} \leq N_3(q,n) \leq 2^{n^{q-1}\log n}, for q \geq 2 and n \geq q+2. Using a stepping-up approach that goes back to Erdos and Hajnal, we prove analogous bounds on N_k(q,n) for larger values of k, which are towers of height k-1 in n^{q-1}. As a geometric application, we prove the following extension of the Happy Ending Theorem. Every family of at least M(n)=2^{n^2 \log n} plane convex bodies in general position, any pair of which share at most two boundary points, has n members in convex position, that is, it has n members such that each of them contributes a point to the boundary of the convex hull of their union.Comment: 32 page
    corecore