791 research outputs found

    Monotone cellular automata in a random environment

    Full text link
    In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in Zd\mathbb{Z}^d with random initial configurations. Formally, we are given a set U={X1,,Xm}\mathcal{U}=\{X_1,\dots,X_m\} of finite subsets of Zd{0}\mathbb{Z}^d\setminus\{\mathbf{0}\}, and an initial set A0ZdA_0\subset\mathbb{Z}^d of `infected' sites, which we take to be random according to the product measure with density pp. At time tNt\in\mathbb{N}, the set of infected sites AtA_t is the union of At1A_{t-1} and the set of all xZdx\in\mathbb{Z}^d such that x+XAt1x+X\in A_{t-1} for some XUX\in\mathcal{U}. Our model may alternatively be thought of as bootstrap percolation on Zd\mathbb{Z}^d with arbitrary update rules, and for this reason we call it U\mathcal{U}-bootstrap percolation. In two dimensions, we give a classification of U\mathcal{U}-bootstrap percolation models into three classes -- supercritical, critical and subcritical -- and we prove results about the phase transitions of all models belonging to the first two of these classes. More precisely, we show that the critical probability for percolation on (Z/nZ)2(\mathbb{Z}/n\mathbb{Z})^2 is (logn)Θ(1)(\log n)^{-\Theta(1)} for all models in the critical class, and that it is nΘ(1)n^{-\Theta(1)} for all models in the supercritical class. The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular they are the first that make no assumptions of symmetry. It is the hope of the authors that this work will initiate a new, unified theory of bootstrap percolation on Zd\mathbb{Z}^d.Comment: 33 pages, 7 figure

    Cellular Automata and Bootstrap Percolation

    Full text link
    We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when initialized on a Bernoulli random configuration with density pp, for some/all 0<p<10 < p < 1. Second, there exists an automaton whose space-filling property depends on pp in a non-monotone way.Comment: 18 pages, 3 figure

    Nucleation and growth in two dimensions

    Get PDF
    We consider a dynamical process on a graph GG, in which vertices are infected (randomly) at a rate which depends on the number of their neighbours that are already infected. This model includes bootstrap percolation and first-passage percolation as its extreme points. We give a precise description of the evolution of this process on the graph Z2\mathbb{Z}^2, significantly sharpening results of Dehghanpour and Schonmann. In particular, we determine the typical infection time up to a constant factor for almost all natural values of the parameters, and in a large range we obtain a stronger, sharp threshold.Comment: 35 pages, Section 6 update

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Higher order corrections for anisotropic bootstrap percolation

    Get PDF
    We study the critical probability for the metastable phase transition of the two-dimensional anisotropic bootstrap percolation model with (1,2)(1,2)-neighbourhood and threshold r=3r = 3. The first order asymptotics for the critical probability were recently determined by the first and second authors. Here we determine the following sharp second and third order asymptotics: pc([L]2,N(1,2),3)  =  (loglogL)212logLloglogLlogloglogL3logL+(log92+1±o(1))loglogL6logL. p_c\big( [L]^2,\mathcal{N}_{(1,2)},3 \big) \; = \; \frac{(\log \log L)^2}{12\log L} \, - \, \frac{\log \log L \, \log \log \log L}{ 3\log L} + \frac{\left(\log \frac{9}{2} + 1 \pm o(1) \right)\log \log L}{6\log L}. We note that the second and third order terms are so large that the first order asymptotics fail to approximate pcp_c even for lattices of size well beyond 1010100010^{10^{1000}}.Comment: 46 page

    Maximal Bootstrap Percolation Time on the Hypercube via Generalised Snake-in-the-Box

    Get PDF
    In rr-neighbour bootstrap percolation, vertices (sites) of a graph GG are infected, round-by-round, if they have rr neighbours already infected. Once infected, they remain infected. An initial set of infected sites is said to percolate if every site is eventually infected. We determine the maximal percolation time for rr-neighbour bootstrap percolation on the hypercube for all r3r \geq 3 as the dimension dd goes to infinity up to a logarithmic factor. Surprisingly, it turns out to be 2dd\frac{2^d}{d}, which is in great contrast with the value for r=2r=2, which is quadratic in dd, as established by Przykucki. Furthermore, we discover a link between this problem and a generalisation of the well-known Snake-in-the-Box problem.Comment: 14 pages, 1 figure, submitte
    corecore