6,499 research outputs found

    On discrete orthogonal polynomials of several variables

    Get PDF
    Let VV be a set of isolated points in \RR^d. Define a linear functional \CL on the space of real polynomials restricted on VV, \CL f = \sum_{x \in V} f(x)\rho(x), where ρ\rho is a nonzero function on VV. Polynomial subspaces that contain discrete orthogonal polynomials with respect to the bilinear form = \CL(f g) are identified. One result shows that the discrete orthogonal polynomials still satisfy a three-term relation and Favard's theorem holds in this general setting.Comment: 15 pages, 2 figure

    Moving least squares via orthogonal polynomials

    Get PDF
    A method for moving least squares interpolation and differentiation is presented in the framework of orthogonal polynomials on discrete points. This yields a robust and efficient method which can avoid singularities and breakdowns in the moving least squares method caused by particular configurations of nodes in the system. The method is tested by applying it to the estimation of first and second derivatives of test functions on random point distributions in two and three dimensions and by examining in detail the evaluation of second derivatives on one selected configuration. The accuracy and convergence of the method are examined with respect to length scale (point separation) and the number of points used. The method is found to be robust, accurate and convergent.Comment: Extensively revised in response to referees' comment

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm

    Rodrigues Formula for Hi-Jack Symmetric Polynomials Associated with the Quantum Calogero Model

    Full text link
    The Hi-Jack symmetric polynomials, which are associated with the simultaneous eigenstates for the first and second conserved operators of the quantum Calogero model, are studied. Using the algebraic properties of the Dunkl operators for the model, we derive the Rodrigues formula for the Hi-Jack symmetric polynomials. Some properties of the Hi-Jack polynomials and the relationships with the Jack symmetric polynomials and with the basis given by the QISM approach are presented. The Hi-Jack symmetric polynomials are strong candidates for the orthogonal basis of the quantum Calogero model.Comment: 17 pages, LaTeX file using jpsj.sty (ver. 0.8), cite.sty, subeqna.sty, subeqn.sty, jpsjbs1.sty and jpsjbs2.sty (all included.) You can get all the macros from ftp.u-tokyo.ac.jp/pub/SOCIETY/JPSJ

    Properties of some families of hypergeometric orthogonal polynomials in several variables

    Full text link
    Limiting cases are studied of the Koornwinder-Macdonald multivariable generalization of the Askey-Wilson polynomials. We recover recently and not so recently introduced families of hypergeometric orthogonal polynomials in several variables consisting of multivariable Wilson, continuous Hahn and Jacobi type polynomials, respectively. For each class of polynomials we provide systems of difference (or differential) equations, recurrence relations, and expressions for the norms of the polynomials in terms of the norm of the constant polynomial.Comment: 42 pages, AMSLaTeX 1.1 with amssym
    corecore