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Abstract

Let V be a set of isolated points&f’. Define a linear functionat on the space of real polynomials
restricted onV, Lf =" oy f(x)p(x), wherep is a nonzero function o#f. Polynomial subspaces
that contain discreterthogonal polynomialsvith respect tahe bilinear form(f, g) = L(fg) are
identified. One result shows thaigt discrete orthogonal polynomialilisatisfy a three-term relation
and Favard’s theorem holds in this general setting.
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1. Introduction

Discrete orthogonal polynomials appear naturally in combinatorics, genetics, statistics
and various areas in applied mathematiee(for example, [4,6]). In one variable they
have been studied extensively. LBt be a set of isolated points on the real line, its
cardinality |V| is either finite or countable. Let be a real positive function ofv.

With respect to the bilinear formif, g) =Y .., f(x)g(x)w(x), there is a sequence of
orthogonal polynomialdp,: 0 <n < |V|} on V with (p,, pn) =0 for n £ m (for
example, using Gram—Schmidt process). These are the discrete orthogonal polynomials.
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Their structure is similar to that of the usual continuous orthogonal polynomials. For
example, every sequence of discrete orthogonal polynomials satisfies a three-term relation,

XPn = QpPp+1+ bppn +cnpn-1, 0<n |V -1, (11)

wherea,, b, andc, are real numbers. Furthermore, according to Favard’s theorem, the
three-term relation esagally characterizes thorthogonality of polynomials.

Discrete orthogonal polynomials of several variables are far less studied. Their
orthogonal structure is much more complicated than that of one variable. Even some basic
problems have not been addressed. Let us first fix some notation. We use the standard
multiindex notation: forx € R? anda € Ng, write x* = xj* - .- x. This is a monomial of
(total) degreéa| := a1 + - - -+ ay. Let 1Y =R[x1, ..., x4] and let/1¢ be the subspace of
polynomials of degree at most Denote byP,‘f the space of homogeneous polynomials of
degreen. It is well known that

d-1 d
dimPﬁ:(n;_l ) and dimnff:(nz )

Let £ be a linear functional defined afi?, such that a basis of orthogonal polynomials
{Py: la| =n,a € N‘é, n > 0}, whereP, € 17,‘,’, exists with respect to the bilinear form
(f.8)=L(fg),inthe sense thgtP,, Pg) =0 if || # |B]. Letv,‘f =spaniP,: |a| =n} be

the space of orthogonal polynomials of total degre€hen dimef = dimPf,’. In this case,

if we adopt the point of view that thethogonality holds in terms of the subspad#s not

in terms of particular bases df/, then we can have an analog of a three-term relation. Let
P, ={P,: |a| =n}; we also usé, to denote a column vector, in which the elements are
ordered according to a fixed monomial order. iitige following three-term relation holds,

xilP, = An,iPn-i-l + Bn,iPn + Cn,iPn—l’ 1<i<d, n>20, (12)

where A, ;, B,; and C,; are matrices of appropriate dimensions, dhd; := 0.
Furthermore, there is an analogue of Favard's theorem [11]. For the general theory of
orthogonal polynomials of several variables, we refer to Chapter 3 of [2].

Let V be a set of isolated points iR?. Again we denote byV | the cardinality ofV,
which can be finite or countable. The orthogonal polynomial¥ afepend on the structure
of the polynomial ideal (V) that hasV as its variety,

I(V)={peRlxy,...,xql: p(x)=0, Vx e V}.

The discrete orthogonal polynomials &hcan only consist of polynomials that do not
belong to/ (V). Let £ be defined byC f =} .y f(x)W(x), whereW is a real function
onV, Wkx)#0forallxeV,and) .y |x*||W(x)| < oo forall « € Ng in the case
whereV is a countable set. Only if (V) = {0}, can a complete basi®,: « € Ng} of

I7¢ with respect tol exist and the discussion in the previous paragraph applies. If the
ideal (V) is nontrivial, for example, whenV| is finite, then we need to understand
the subspac®[V] = I1¢/1(V) in order to define orthogonal polynomials. In the case
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R[V] = 14, for example, little extra work is needed; the three-term relation in the form
(1.2) holds for 0< n < N. This is the case of straightforward extension of discrete
orthogonal polynomials in one variable. However, even in the case whisra product of
two point setsX andY in one variabley = X x Y with |V| = N, R[V] consists of only a
subspace oﬂf{,. In general, the spadg[V] can be rather complicated and care is needed
for the definition of orthogonal polynomials on a discreteéet

The purpose of the present study is to define discrete orthogonal polynomials in this
general setting. The polynomial subspaceasibich the discrete orthogonal polynomials
exist are identified and the three-term relation and Favard’s theorem are established. In
the following section we discussdbstructure of polynomial subspaces Bn Discrete
orthogonal polynomials o are studied in Section 3. Various examples will be given in
the paper, some are given in terms of the classical discrete orthogonal polynomials, such
as Hahn polynomials, in Section 4. It is our hope that this study can help to clarify some of
the basic questions in the theory of discrete orthogonal polynomials.

2. Polynomial spaceson V

First we need to understand the structure of the quotient idéal, wherel := I (V)
andV is a set of isolated points iR?, finite or countable. Most of the results below also
hold if V has finitely many accumulation point&/e review some results about ideals and
varieties, our basic reference is [1].

For f, g € IT%, we say thatf is congruent tog modulo 7, written asf = g mod 1,
if and only if f — g € I. If |V| is finite, then it is known that the codimension bfis
equal to|V|; that is, dimiT¢/1(V) = |V|. Let R[V] denote the collection of polynomial
functions¢ : V — R. This is a commutative ring and it is isomorphic to the quotient ring
I74/1(V). We can identifyR[V] with I7¢/I as there is an one-to-one correspondence
betweenp € R[V] and[¢] = {g € IT?: g =¢ modI}. Itis possible to say more about this
space. For a fixed monomial order, we denotehyf) the leading monomial term for any
polynomial f € IT4; that is, if f = Y cex®, thenLT(f) = cgx”, wherex? is the leading
monomial among all monomials appearingfirandcg # 0. For a polynomial ideal other
than[1], we denote by T(7) the leading terms of, that is,

LT(]) = {cx* | there existsf € I with LT(f) = cx*}.
We further denote by{LT(/)) the ideal generated by the leading terma.off) for all

f €1\ {0}. According to the Hilbert basis theorem, every polynomial ideal has a finite
basis. A sefg, ..., g} is called a Grobner basis &fif

(LT(gD). ..., LT(g)) = (LT(D)).

It is known that every polynomial ideal has a Grébner basis. Such a basis enjoys many
interesting properties that have important applications. For example, it is used to prove the
following result [1, Chapter 5].
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Proposition 2.1. Fix a monomial ordering or7¢ and let/ c I7¢ be an ideal. Then there
is an isomorphism betwedfi¢ /I and the space

Sy :==spar{x® | x* ¢ (LT(]))}.
More precisely, every e IT¢ is congruent moduld to a unique polynomial € S;.

In fact, the polynomiat is the remainder of on division byl. Forl = (f1,..., fu)
and a fixed monomial order, the division algorithm states that for efery1?, there exist
pi andr in IT¢ such thatf = 3 p; f; + r, wherer € S; and no term of is divisible by
any ofLT(f1), ..., LT(fu). The remainder polynomialis unique if the basig, ..., fu
is a Grébner basis.

Proposition 2.2. Let V be a set of isolated points iR¢ and I = I(V). Let A := A(V)
be the index sefA = {a: x* ¢ LT(/)}. Then every polynomiaP € R[V] can be written
uniquely as

p(x)zzcax’“ modl(V), c¢q€R,

aeA

and the setA satisfies the following property
acA implies o —BeA, whenever a —feNS and BeNd. (2.1)

Proof. For I =1(V), we can takeS; in Proposition 2.1 a®[V], modulus! if needed.

The definition shows that we can wrigg = sparfx*: « € A}. Hence, every polynomial
P in R[V] has the stated representation. Since the idegl/)) is a monomial ideal,
x® € (LT(I)) implies x**# e (LT(I)) for any B € Ng. Consequently, it follows that the
set A satisfies the property (2.1).0

In the following, we shall drop modulusand useR[V] to denote the space
R[V]=sparfx®: a« € A(V)}. (2.2)
This abuse of notation should not cause problems.
We should point out that the sdtis not unique, since all equations actually hold under
congruence modulé. In fact, Grébner bases are not unique, since the choice of monomial
orders matters. There are in fact manyeliéfint representations of element&ifi/]. What

is of interest is the property (2.1) satisfied y

Example 2.1. Consider the seV = {(0,0), (0, 1), (1, 2), (2,3)}. It is easy to see that
1(V) = (g1, 82, g3), Where

gl(x7y):x(x_1)(-x_2)a gZ(X’y)Zx(x+1_y), gS(X’y)z)’(x'Fl_Y)
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Fig. 1.

If we use the graded reverse lexicographical onger k — 1,k + 1) = (n — k, k), then
(LT(D)) = (y2, xy, x3) andR[V] = sparil, x, y, x2}. If we use the graded lexicographical
order (n — k, k) = (n — k — 1,k + 1), then (LT(I)) = (x2, xy, y3) since we also have
I(V) = (g2, g3. ga) Wherega(x, y) = y* — 6y? + By + 6x, andR[V] = spar{1, x, y, y?}.

Ford = 2, the property (2.1) ofA shows that the set must be of a stair shape as the
lattice points in the unshaded area depicted in Fig. 1.

That is, in the case af = 2, for each setA there is a sequence of positive integers
which satisfies,, <n,—1 < --- <no (some of thes; can be positive infinity), such that

A={k,D): 0<I<m, 0<k<nm}. (2.3)
Example 2.2. Let A be the lattice set in the two figures in Fig. 1. For the left one; 6
and A = {(@, j): 0<i <nj,0< j <6} with (no,...,ne) = (6,4,4,4,2,2,0). For the
right one,n = 3 and
A={G0:0<i<2}uU{i,D:0<i<2}u{(0,2}U{(©0,3)}

with (ng, n1,n2,n3) =(2,2,0,0).

Proposition 2.3. There exists a point sét for whichR[V] in (2.2)is given by the index
setA in (2.3).

Proof. Letxo, x1, ..., xn, andyo, y1, ..., yn be isolated real numbers. We define the point
setV as follows:

V ={(x0,y0), (x1,¥0), .-, (Xng,0),
(x0, y1), (x1,y1), ..., (Xng,y1)

(X0, Ym)s (X1, Ym), ..., (xnma ym)}~
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If ng is finite, then|V|=no +n1+--- + n, + m + 1. We letn,,11 = —1 and adopt the
convention thaf [, a; = 1. Define polynomials

n k—1
am=[Je-—x)[[o-y), 0<k<m+1,
i=0 j=0

where if nx = oo, then we takegi(x) = 1. Then it is easy to see thatl) =
(g0, &1, - - -» gm+1), SO that

(LT(1)) = (0L Ly | gntdym gl
from which it follows thatR[ V] = {x*y': (k,) € A} with A givenin (2.3). O

Example 2.3. Consider the “triangle” point set

VZ{(XO, y0)7 (.XO, yl)a MR (.XO, )’m),
(-xlv yl)s ey (-xlv )’m)’
Xy ym) |

where all points are isolated antl| = (m + 1)(m + 2)/2. In this casen; = m — [ for
0 <1 < m (making a transpose of the array as in matrix transpose), seithaf(k, /): 0 <
k+1<m)andR[V]=IT2.

Example 2.4. Consider the “product” point set
V=XxY={(xy): 0<i<n, 0<j<m},

for which |V| = (n + 1)(m + 1). In this caseng =n1 =--- =n,, =n andR[V] =
(xkyh 0<k<n,0<I<m) =M} x ITL.

The above discussion can be extende®feoy, ..., xs]. We stick to the casé = 2 to
keep the notation simple.

A couple of remarks are in order. Firstzif = oo in Example 2.2, theR[V] = R[x, y].
This is also the case for Example 2.3 when betandm are infinity. If, howeverp is
infinite andm is finite (or other way round), thed = {(k,[): 0 <! <m,k > 0} is an
infinite set but not aIN(Z) andR[V] = IT¢ x IT,,. Furthermore, the space of polynomials of
one variable appears as a special case.

Example 2.5. If V is a point set on the coordinate liney = {(xo, 0), ..., (x,, 0)} (n can
be infinity), thenR[ V] = IT}.
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Second, we should point out that the point $ein the proposition, and the above
examples, are the simplest examples for wHijtV] can be determined. For a generic
point setV, the problem of determining[V ] is highly nontrivial. One possible algorithm,
at least forV is finite and moderate in size, is to check the rank of the matrices whose rows
are the vector¥, := {x*: x € V}.

The algorithm goes as follows: fix a graded monomial order, starting avithiN,,, :=
{B: 18] < m} for a smallm, so that the resulting matri¢X,)qcn, has full rank. Then add
new rowsX, according to the order ije| = m + 1 to the matrix. For each new row added,
check the rank of the new matrix; if it has full rank, add the néxtand proceed; if it does
not have full rank, remove this row and add the n&xtand continue. When the matrix
becomes a square nonsingular matrix, the corresponding s&tafl be a basis folR[V].

3. Discreteorthogonal polynomials

Let V be a set of isolated points R?. Let W be a real function oV and W (x) # 0
foranyx € V. Assume that

D x|[Wx)| < oo foralle e Ng

xeV

in the case wher¥ is an infinite set. We define a bilinear form-) on I7¢ x I1¢ by

(f,8)=L(fg), whereL(f):= ) fx)W(x).

xeV

If (f,g) =0, we say thatf andg are orthogonal to eachlar with respect tdv on the

discrete seV. The notationZ(fg) is more convenient for the matrix operations below.
Fix a graded monomial order. L&[V] and A = A(V) be defined as in the previous

section (see (2.2)). Let = maX{|a|: o« € A(V)} and Ax(V) = {a € A(V): |a| = k},

0 < k < n. Note thatn can be infinity. Definey = | Ax(V)|. We denote b, x{* andx*,

0< k <n,the sets

xA={x e AW},  x¢={x"ex ol <k}, X={x"aeA (V)]

respectively. We also regard them as coluwectors in which the elements are ordered
according to the fixed graded monomial order.

The set of orthogonal polynomials dn will be denoted by{P,: o € A(V)}, where
Py has degre@x|. We introduce the following notion. ifP,: « € A(V)} is a sequence of
polynomials inR[ V], then sefP; := {P,: « € Ax(V)}. Just as in the case &f, we also
regardP; as a column vector.
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Definition 3.1. Let V be the set of isolated points afid be a nonzero real function dn
as above. A sequence of polynomigl, € H“él: a € A(V)} is orthogonal with respect to
W if

LKP])=(xB)=0, k>1, and L(XP])=(x* B =S,

for 0 < k < n, whereS; is an invertible matrix of size, x ry. The sequence is orthonormal
with respecttoW onV if (Px, Px) = I, the identity matrix, for G< k& < n.

The notationC(x’IP’kT) is more convenient thafx*, ), since it shows clearly that this
is a matrix of sizey x r¢. The orthogonality o, is defined as orthogonal to lower degree
polynomials, as in the continuous case. The polynomials of the same degree may not be
pairwise orthogonal. Bdefinition, we can write

Pr = Gixk + Gro1Xk 1 4 G,

whereGy is ary x r matrix, called the leading coefficient &,. Assume a sequence of
orthogonal polynomial®, exists onV. Then we can follow the proof in [2, Section 3.1]
to show that{Po, ..., Pk} is a basis folR[V] N [T, Hy := L(PxP]) and G, are both
invertible. Furthermore, the following theorem still holds.

Theorem 3.2. A sequence of orthogonal polynomi@lg,: o € A(V)} with respect tow
onV exists if and only if the matrice® := (x{', x{') are nonsingular fol0 < k < n.

The proof is based on linear algebra and follows exactly as in the continuous case; see
[2, Theorem 3.1.6].

If W is positive onV, W(x) > 0 for all x € V, then(f, f) =0 impliesf =0onV,
so that the bilinear forni-, ) = 0 becomes an inner product @&{V]. For such aw,
orthogonal polynomials ofv exist. Furthermore, in this case, we can have orthonormal
bases.

Theorem 3.3. If W is a positive function onV, then a sequence of orthonormal
polynomials{ P,: a € A(V)} with respect toW on V exists.

Proof. In this case, the matri¥/, is positive definite since for any nonzero column
vectorc, c” Mic = (cI'xk, cTx¥) > 0. In particular,M, := (x4, x4) is a symmetric and
positive definite matrix. It follows that it can be factored Mg, = SDST wheres is a
nonsingular lower triangular matrix antl = diag{d1, do, .. ., djy|} with all d; > 0. Let
D~Y2 = diagid; 7?,....d;,/*} and R = D~Y25~1. Then RM4R" = (Rx", Rx") =
Iy|. SinceS is lower triangular anck = {x% x%,...,x"} as a column vector, we can
write the components a¢x” asPo, ..., P, whereP; consists of polynomials of degrée
These are the orthonormal polynomialsa

The proof of the theorem provides an algorithm that can be used to construct discrete
polynomials in several variables. Ra#| is finite and moderate in size, it is rather effective;
an example is given in the following section (Example 4.3).
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Let Vi (W) denote the space of orthogonal polynomials of degtebat is, Vi (W) =
sparP;. Evidently dimV, (W) = r,. Comparing to the orthogonal polynomials in the
continuous case, the numbefsdepend onV and there is no closed formula for them.
Furthermorery < dimP,‘f and the equality often does not hold. In fagtmay no longer
be an increasing sequence.

Example 3.1. Let V = X x Y be the product point set in Example 2.3, whéfe=
{x0,...,xp}andY ={yo, ..., yn}. Heren=n+m. LetW(x, y) = w1(x)w2(y), wherew,
is positive onX andw; is positive onY. Then the orthogonal polynomidls, 0 < k < n,
exist and can be constructed as follows:{lgs, p1, ..., p»} and{qo, g1, ..., g,} denote
the discrete orthogonal polynomials with respectitoon X andw; on Y, respectively.
Then the orthogonal polynomials dn are given byPy ;(x, y) = px(x)q:(y). We assume
m is finite andn > m. Then in our vector notation,

Pr(x, y) = { po()qx (y), pr()q-1(y), ..., pr(x)go(y)} forO<k <m,

sothatry =k +1forO<k <m,

Pr(x, y) = {pk-m () gm (). ... pr(¥)q0(y)} form+1<k<n,

sothaty =m+1form+1<k<n,and

Pr(x, ¥) = {Pk=m ) qm ), - .. Pn()gr—n ()} forn+ 1<k <n+m,
sothaty =n+m—k+1forn+1<k<n+m—1.

Next we consider the three-term relations satisfied by the orthogonal polynomials. If
Py is an orthogonal polynomial, theR, € R[V] so that it is a linear combination of*
for @ € A(V). Clearly, multiplying by a coordinate; gives a polynomiak; P, of degree
|a| + 1. However, unlike the continuous casex® may not belong tdR[V] for some
a € A(V). Nevertheless, it is congruent modulli§/) to a unique polynomial ifR[V].
Recall thain = max{|a|: a € A(V)}.

Proposition 3.4. Let I := I (V). For 0 < k < n — 1, there exist matriced ;: rr X rrt1,
Br.i: ri X ry, andCy ;i rx x rr—1, such that forl <i <d,

xiPr(x) = Ap,iPry1(x) + By iPr(x) + Cr,iPr—1(x) modI, (3.1)
where0 < k < n—1and we defin®_1 =0, Ay ; =0andC_1; = 0; moreover,
ApiHip1= E(Xi]P)k]P]{_,_l) = HkaT-i-l,i’ By, Hy = E(x,']P’kPI{). (3.2

Proof. If all components ok; [P, are inR[V], this is proved as in the usual case, by writing
x;Pr in terms of orthogonal polynomialBg, P1, ..., Px+1 and then use orthogonality.
If Py, € R[V] butx; P, ¢ R[V] for some|a| = k, then there exist @ in (V) and an
R, € R[V] such thaty; P, (x) = Q(x) + Ry (x), and the degree at,, is at mostk + 1. We
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can write Ry = ay41Prs1 + aPr + a—1Px—1 + - - -, wherea; are some row vectors of
appropriate size. By the orthogonality, we get

1L (PitaPlyq) = L(RaP11) = L(PuPf 1),
since Q vanishes orV and(Q, P) = 0 for any P. Similarly, we geta; Hy = £(PaIP>,{),
ap_1Hy_ 1= E(PaIPkal), and all otheia; are equal to zero. In vemt and matrix notation,
this is the three-term relation. The presence@oimeans that the equality holds under
modulus! (V) in general. O
Corollary 3.5. Let I := I (V). If {IP;} are orthonormal polynomials, then far<i <d,
xiPr(x) = ApiPra1(x) + BeiPr(x) + A{_; Pr-1(x) mod1, (3.3)

whereO<k<n—-1,P_1 =0, Ax; =0andC_1; = 0; moreoverB, ; are symmetric.

In the case of continuous orthogonal polynomials, the matgix has more columns
than rows and it has full rank. This is no longer true in the discrete case. Ginmoay
no longer be an increasing sequence, the mafyix can have more rows than columns;

moreover, it may not have full rank.

Example 3.1°. We continue the exampl& = X x ¥ in Example 3.1. Assume that
{po, p1, ..., pu} Satisfies the three-term relation

xpik(x) = ap pra1(x) + b pr (x) + ck pr—1(x)

and{qo, 91, . . . , g} Satisfies the three-term relation

yak(y) = a,qr+1(y) + brgr(y) + cpqr—-1(y),

respectively. Withy = x1 andy = x2, the matricesAy 1 and A » take the form

0 ao O ay o0
Ar1= and Apo= . 0<k<m,

0O ax O ag 0
of size(k+ 1) x (k + 2);

Ak—m O /

Ap1= and Ap2= ) ) , m<k<n,

O a . /.

o o
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of size(m + 1) x (m + 1); and

Ak—m O 0 0
. A O
Ap1= : and Axo2= ) , n<k<n+m,
ay ..
0 0 O a;{in

of size(n+m —k +1) x (n+m — k). Note thatA, 2 in the casen < k < n does not have
full rank. Forn < k <n 4+ m, Ax,; has more rows than columns.

One consequence of the three-term relation is the Christoffel-Darboux formula,

k T

Prr1(x) Ay ;Pr(y) — Pr(x) Ak iPrya(y)
Y B )P () = — o L mod 1(V),
j:0 1 1

where 1< i < d and 0< k < n. The proof follows as in the continuous case.
The composite matrixd, = (A] ,,...,A{ ) plays an important role in Favard's
theorem of several variables. This matrix is of sizg x r,1.

Proposition 3.6. For 0 < k < n—1, drr > ri41; the composite matridg of Ax 1, ..., Axq
and the composite matri®;1 of Cx+1.1, - . ., Cxk+1,4 both have full rank,

rankAy = rankC/, ; = ris1. (3.4)

Proof. Recall thatG; denotes the leading coefficient Bf and it is an invertible matrix.
Lete; =(0,...,0,1,0,...,0) be theith element of the standard Euclidean basis. By
(2.1),a € A(V) implies thate — e; € A(V). If a € Ap(V) buta + ¢; ¢ Axr1(V), then
xix% =x%*¢ e (LT(I)). We then define the matrik; ; by

xixE =L)Xt mod(LT(D), 1<i<d.

The matrix Ly ; is of the sizery x rr+1 and it is uniquely determined. Comparing the
coefficients of**1 in both sides of the three-term relation, we see that

GiLii=AriGr+1, 1<i<d. (3.5)

The entries of the matriX, ; are mostly 0 with at most one 1 in each row. Howevgr;
may not have full rank.

Sincea € Ary1(V) implies thata — ¢; € A whenevere; — 1 > 0, it follows that
dri > riq1 Sincery = |Ax(V)|. Moreover, since the column vect@kix¥, ..., x x*)
is equal toL;x**1, where L, is the composite matrix ol 1,...,Lixa, and clearly
{x;xk: 1 <i <d}includesx**! as a subset, it follows thdlt; has full rankr,1.

Equation (3.5) implies thatA;Gy+1 = diag{G, ..., G¢}Lx. Since Gy invertible
implies diadGy, ..., G} invertible, it follows that ranld ;1 = r¢1. Furthermore, (3.2)
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implies thatA; Hy+1 = diag{Hy, . . ., Hk}CkTJrl and H; is invertible; hence, rank;1 =
rankA;. O

Since the matrixA; has full rank anddry > rr+1, it has a generalized inverse,
D!, which is of the sizeri;1 x dry and can be assumed to be of the fo =
(DkT_l, D,zd), WhereD,Zi are of the sizey1 x r. Then

DI Ay = DjzlAk,l +-+ D,ZdAk,d =l -
We note that the generalized inverse is in general not unique. Wsjngve get from the
three-term relation a recursive formula

d d d
Peyr=» xiAriPr— Y BriPi— Y  CriPi1, (3.6)
i—1 i1 i—1

which allows us to computB;;1 usingP; andPy_1. This formula is useful in the proof
of the analog of Favard’s theorem.

According to Propositions 3.4 arf16, orthogonal polynomials on a sgtof isolated
points satisfy a three-term relation whose coefficient satisfies a rank condition. We want
to establish that the converse is also true, that is, an analog of Favard’s theorem. To this
end, we start with a sequence of polynomials that satisfies the three-term relation (3.1) and
the rank condition (3.4), and show that there exist aVsef isolated points and a weight
function W on V with respect to which the polynomials are orthogonal.

For this purpose let us start with an iddat- I7¢ and letA := {« € Nd: x ¢ (LT(1))}.
The proof of Proposition 2.2 shows thatsatisfies the property (2.1). Assume that there
is a sequence of polynomialy, € Sy := sparix®: x* ¢ (LT(I))}, whereP, is indexed by
a € A such thatPp =1 andP, € 17@‘. Setn = maX|«|: a € A}, which can be infinity.
Let Ay ={a € A: || =k} and letP, = {P,: a € Ax} for 0 < k < n, and regard®, as
column vectors according tofexed graded monomial order.

Theorem 3.7. Let I be an ideal off7? and let A and P, be as above. Assume tHat
satisfies the three-term relatid.1) whose coefficient matrices satisfy the rank condition
(3.4).

(i) There is a linear functional on S; for which P, are orthogonal polynomials with
respect to the bilinear forn£(fg) = (f, g).

(i) If nis finite then there exist a s&t of isolated points and a real functioW on
V, W(x) # 0 for all x € V, such that{P,: « € A} is a sequence of orthogonal
polynomials with respect t#/ on V.

Proof. (i) The proof follows along the line of the proof of Favard’s theorem for continuous
orthogonal polynomials of several variables. We shall be brief whenever proofs in the two
cases are essentially the same. Using induction, it follows from the three-term relation
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and the rank condition that the leading coefficie6ts of P; are invertible. The linear
functional,£, defined by

L1=1 and LP)=0, 1<k<n,

is well defined forS;, since every polynomial ir5; takes the form)_ ., cox® and
A satisfies (2.1). Furthermore, using (3.6), one can show by induction tisattisfies
L:(]P’kIP’]T) =0 for k # j, and the matrixt; = L(PP}) is invertible. Consequentlyg;
are orthogonal polynomials wittespect to the bilinear formg(fg) = (f, g).

(il) We only need to show that the linear functioatan be represented by a sum over
a set of isolated points; that i§,can be written as

Lf=AfX)+ - +Anf(Xn) (3.7)

for somex; with &; # 0 for 1 <i < N. Assume thatC has such an expression. If

X; are known thenlP, = 8,0, @ € A, becomes a system of equations bn The
coefficient matrix of this system igPy(x;)], wherea € A and 1< i < N. In particular,

if N =|A|then the matrix is a square matrix. Its determinant is a polynomial in variables
X1, X2, ..., Xy and defines a hypersurface Rf V. Hence, for almost all choices of the
values ofxi, ..., Xy, the determinant is nonzero. Furthermore, by Cremer’s rule, it is
possible to choose a sBt= {x1, ..., Xy} such that,; # 0 for 1<i < N. Hence,P, are
orthogonal with respect td/ on V, whereW is defined byW (x;) =1;, 1<i < N. O

A couple of remarks are in order. First of all rifis infinity, we do not know ifC can be
written as a sum of point evaluationf =) ., f(x), on a countable séf. In fact, if
I is the trivial ideal(1), thenA = Ng; the three-term relation takes the same form as that
for continuous orthogonal polynomials and ttamk condition remains the same. Hence,
the three-term relation and the rank condit@re not enough to give further information
on the linear functional.

The same phenomenon will happen to the case8has a product polynomial space,
say, IT¢ x 114, for which the orthogonal polynomials age (x)gx(y), 0< j < m, and
k > 0. No matter ifg; are orthogonal with respect to a linear functional defined by an
integral or to a linear functional defined by an infinite sum, the three-term relation will
take the same form and the rank condition will also remain the same.

Secondly, the proof of the theorem only shows ti#ats nonzero at every point df .
This is enough if we only deal with orthogonality but not orthonormality. The theorem
simply states that the rank condition (3.4)dahe three-term relation (3.1) are enough to
ensure orthogonality. The following corollary is about the case of orthonormality, where
we do get positive weight. The difference is in the three-term relations (3.3) vs (3.1).

Corollary 3.8. Let I be an ideal off7¢ and let A andP; be as in the theorem. Assume
thatn is finite. If P satisfies the three-term relatig8.3)whose coefficient matrices satisfy
the rank conditior(3.4), then there is a sélt of isolated points and a positive functiéh
onV such that{P,: @ € A} is a sequence of orthonormal polynomials with resped¥to
onv.
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Proof. According to the theorem, there is a $étso thatP, are orthogonal with respect
to the bilinear form defined by the linear functiondlof the form (3.7). We need to
show thatH; = L(PkIP’,{) is an identity matrix for 0< k < n. This can be established
by induction. SincePo =1 and£1 =1, we haveHo = 1. By (3.2) with C/,, = A,

Ay Hyq1 =diag{Hy, . .., Hi}Ax. AssumeH; = I,,. Then diagH;, ..., Hi} is an identity
matrix, so thatHy1 is an identity matrix by the rdncondition. From the fact that
Li(]P’kIP’,{) = I, it follows easily thatl is a positive definite linear functional, which shows
in particular thatW (x;) = A; > O0forallx; e V. O

The coefficient matrices of the three-terrfaten (3.3) can be used to define the analog
of Jacobi matrices,

Boi Ao, O
Ad; Bui  Aui
Ji= . 1<i<d.
A,{_&[ Bn—2,i An—2,i
o ALy Bov

According to the three-term relatiory; is the matrix representation of the operator
x; i P x; P. Sincex;x;Pr = xjx;P, modI(V), 1<k < n, it follows that these matrices
commute. In other words, we have the following proposition.

Proposition 3.9. If n s finite, then the Jacobi matrices commutel; = J;J;, 1<, j <d.

If n is infinity, then the matrices become infinite and we need to consider them as
operators. Still, the Jacobi matrices formally commute. In the casettkal¢, see [12].

4. Examples

Some examples have been given in the previous sections. To make them more concrete,
let us mention two classical discrete polynomials. See, for example, [3,5].

The Hahn polynomialsQ(x; a, b, N), are discrete orthogonal polynomials defined
on the setV ={0,1,..., N} and are orthogonal with respect to the hypergeometric
distribution(a + 1)y (b + Dy_»/(x!(N — x)1),

N
> <x +a) (N . +b> On(x;a,b, N)Qu(x;a,b,N)
AN N-—y

_ D"+ Dun+a+b+ 1yt
T N@n+a+b+1D(—N)a+1), "

N

N.

n,m
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Their explicit formulas are given in terms @f> series,

—n,n+a+b+1 —x

Qn(x;a,b,N):=3F2( 4+l —N ;

1>, n=0,1,...,N,

wheregfz is defined as the usugF> with the summation terminating &. The Hahn
polynomials,Q, (x) = Q,(x; a, b, N), satisfy the three-term relation

—x0n(x) =A,0n11(x) — (A +Cp) 0 (x) + C Op—1(x),
where

A _(mnt+a+b+D(n+a+1)(N—n) nn+b)yn+a+b+N+1)
"7 @n+a+b)@n+a+b+1) "

T @n+a+b)n+a+b+1)

The Meixner polynomialsM, (x; b, c), are discrete orthogonal polynomials defined
on the setV = Ng and are orthogonal with respect to the negative binomial distribution
(b)xc*/x!,

9]

(b)x . . ¢ "n!
);) o cme(x, b,c)My(x;b,c)= m(sm,n,

where(a),, denote the Pochhammer symi@),, = a(a+1)...(a +m —1). Their explicit
formula is given in terms of F; series,

M, (x):=My(x;b,c) = zfl(—n, —x:b;1— cil), n=0,12,...,
which satisfies the three-term relation
(¢ — DxMy(x) =c(n+b)Mps1— (n+ (n + b)c) My (x) + nMp—_1(x).
Example 4.1. As a special case of Example 3.1, we have the product Hahn polynomials

of two variables,Q,, (x; a1, b1, N)O,u(x; a2, b2, M), 0<n < N, 0< m < M, which are
orthogonalonthesat ={0,1,..., N} x {0, 1, ..., M} with respect to the weight function

x+al\(N—x+a1\(y+b\(N—y+b
Wix,y)= ,
X N —x y N —y
and the product of Hahn and Meixner polynomigds,(x; a1, az, N)My,(x; b, ¢),0< n <

N,m > 0, which are orthogonal on the set= {0, 1, ..., N} x Np with respect to the
weight function

W(x,y) = <x —;al) (N ;{x_—;al) . %cy.
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We also have product Meixner polynomialg, (x; b1, c1) My, (x; b2, ¢2), n > 0, m >
0, which are orthogonal on the sét = Ng with respect to the weight function
(b1)x (b2)yc* Y /(x!y!). In the last case, we have =k + 1 for all k > 0, as for the usual
continuous orthogonal polynomials.

For the product orthogonal polynomials, the coefficient matridgs in the three-
term relation are given in Example 3.1Note that it is easy to get orthonormal Hahn
and Meixner polynomials (multiply by squareat of the normalization constant), and the
product of the orthonormal polynomials gives orthonormal polynomials in two variables.

Example 4.2. Let V be the “triangle” point set in Example 2.2, Then the orthogonal
polynomialsP, 0 < k < m, exist withr, = k + 1. This is the case that works exactly

as in the case of the continuous orthogonal polynomials. As an example, let us mention the
Hahn polynomials of two variables as defined in [4]. They are given by

(c1+Du(o2+ 1) (=N +x)p
(03+ D02 +03+2n 4 1), (—=N)p,
X Qn(x;01,02+03+2n+1, N —m)Q,,(y; 02,03, N — x),

¢n,m (x,y;0,N)= (_1)n+m

and are orthogonal on the 9ét={(x, y) € Ngz 0 < x +y < N} with respect to the weight

function
x+o1 +01\(N—x—y—+o03
X y N—x—y

In this casex = k + 1 and the matrixd, 1 and A 2 are of the sizék + 1) x (k + 2), just
as in the usual continuous case.

For extensions of classical discrete orthogonal polynomials to several variables, we refer
to [4,9,10]. One can also extend discrgterthogonal polynomials to several variables.

In the following we consider an example in whithcontains 8 points and is given
as in the right figure of Fig. 1.

Example 4.3. We set
V = {(_11 _1)7 (Os _1)7 (11 _1)7 (_11 0)1 (07 O)v (17 O)v (_11 1)1 (_11 2)}
Then R[V] = sparl, x, y, x, xy, y2, x%y, y} as shown in Example 2.2. We use the

method described in Theorem 3@donstruct orthogonal polynomials dhwith respect
to the linear functional

1
LH=5 f.

xeV

That is, we compute the matrid 4 = (x4, x4), where(f, g) = L(fg), and factor it as
SDST . The orthogonal polynomials are given as follows:
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PPx,y) =1,

P (x,y) =1+ 4x,

Pl(x,y) =3+ 12¢ + 22y,

PZ(x,y) = =26+ x + 352 — 4y,

Plz(x, y) =3+ 3x +x2+ 6y + 8xy,

P2(x,y) = —20+ 31x — x2 + 11y + 60xy + 51y,

P3(x,y) = —20+ 3x + 27x% — 45y + 4xy + 562y — 52,
Pl3(x, y) = —9x + 9x2 — 50y — 12xy + 12x°y — 30y° + 20y°,

whereP,." is a polynomial of degreg. By construction, these polynomials are mutually
orthogonal and become orthonwal upon multiplying by proper constants. The corre-
sponding dimensions df, P1, P2, Pz are 1 2, 3, 2.

In the case thaV is a set of lattice point andl' satisfies (2.1), we can také = V.
Examples 4.1 and 4.2 are examples of such a case. If weWtakeA in Example 4.3,
we get orthogonal ponnomiaIQ’;(x, y) = PJ’F(x +1,y+1), whereP]’F are those in the
example.
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