10,699 research outputs found

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    Numerical study on active and passive trailing edge morphing applied to a multi-MW wind turbine section

    Get PDF
    A progressive increasing in turbine dimension has characterized the technological development in offshore wind energy utilization. This aspect reflects on the growing in blade length and weight. For very large turbines, the standard control systems may not be optimal to give the best performance and the best vibratory load damping, keeping the condition of maximum energy production. For this reason, some new solutions have been proposed in research. One of these is the possibility of morphs the blade surface in an active way (increasing the performance in low wind region) or passive (load reduction) way. In this work, we present a numerical study on the active and passive trailing edge morphing, applied to large wind turbines. In particular, the study focuses on the aerodynamic response of a midspan blade section, in terms of fluid structure interaction (FSI) and driven surface deformation. We test the active system in a simple start-up procedure and the passive system in a power production with turbulent wind conditions, that is, two situations in which we expect these systems could improve the performance. All the computations are carried out with a FSI code, which couples a 2D-CFD solver, a moving mesh solver (both implemented in OpenFOAM library) and a FEM solver. We evaluate all the boundary conditions to apply in the section problem by simulating the 5MW NREL wind turbine with the NREL CAE-tools developed for wind turbine simulation

    A Nitsche-based cut finite element method for a fluid--structure interaction problem

    Full text link
    We present a new composite mesh finite element method for fluid--structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh which is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation which allows us to establish stability and optimal order \emph{a priori} error estimates, see~\cite{MassingLarsonLoggEtAl2013}. We consider here a steady state fluid--structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples.Comment: Revised version, 18 pages, 7 figures. Accepted for publication in CAMCo

    A partition of unity approach to fluid mechanics and fluid-structure interaction

    Get PDF
    For problems involving large deformations of thin structures, simulating fluid-structure interaction (FSI) remains challenging largely due to the need to balance computational feasibility, efficiency, and solution accuracy. Overlapping domain techniques have been introduced as a way to combine the fluid-solid mesh conformity, seen in moving-mesh methods, without the need for mesh smoothing or re-meshing, which is a core characteristic of fixed mesh approaches. In this work, we introduce a novel overlapping domain method based on a partition of unity approach. Unified function spaces are defined as a weighted sum of fields given on two overlapping meshes. The method is shown to achieve optimal convergence rates and to be stable for steady-state Stokes, Navier-Stokes, and ALE Navier-Stokes problems. Finally, we present results for FSI in the case of a 2D mock aortic valve simulation. These initial results point to the potential applicability of the method to a wide range of FSI applications, enabling boundary layer refinement and large deformations without the need for re-meshing or user-defined stabilization.Comment: 34 pages, 15 figur
    • …
    corecore