18 research outputs found

    Recurrent 3D Pose Sequence Machines

    Full text link
    3D human articulated pose recovery from monocular image sequences is very challenging due to the diverse appearances, viewpoints, occlusions, and also the human 3D pose is inherently ambiguous from the monocular imagery. It is thus critical to exploit rich spatial and temporal long-range dependencies among body joints for accurate 3D pose sequence prediction. Existing approaches usually manually design some elaborate prior terms and human body kinematic constraints for capturing structures, which are often insufficient to exploit all intrinsic structures and not scalable for all scenarios. In contrast, this paper presents a Recurrent 3D Pose Sequence Machine(RPSM) to automatically learn the image-dependent structural constraint and sequence-dependent temporal context by using a multi-stage sequential refinement. At each stage, our RPSM is composed of three modules to predict the 3D pose sequences based on the previously learned 2D pose representations and 3D poses: (i) a 2D pose module extracting the image-dependent pose representations, (ii) a 3D pose recurrent module regressing 3D poses and (iii) a feature adaption module serving as a bridge between module (i) and (ii) to enable the representation transformation from 2D to 3D domain. These three modules are then assembled into a sequential prediction framework to refine the predicted poses with multiple recurrent stages. Extensive evaluations on the Human3.6M dataset and HumanEva-I dataset show that our RPSM outperforms all state-of-the-art approaches for 3D pose estimation.Comment: Published in CVPR 201

    3D Human Pose Estimation using Spatio-Temporal Networks with Explicit Occlusion Training

    Full text link
    Estimating 3D poses from a monocular video is still a challenging task, despite the significant progress that has been made in recent years. Generally, the performance of existing methods drops when the target person is too small/large, or the motion is too fast/slow relative to the scale and speed of the training data. Moreover, to our knowledge, many of these methods are not designed or trained under severe occlusion explicitly, making their performance on handling occlusion compromised. Addressing these problems, we introduce a spatio-temporal network for robust 3D human pose estimation. As humans in videos may appear in different scales and have various motion speeds, we apply multi-scale spatial features for 2D joints or keypoints prediction in each individual frame, and multi-stride temporal convolutional net-works (TCNs) to estimate 3D joints or keypoints. Furthermore, we design a spatio-temporal discriminator based on body structures as well as limb motions to assess whether the predicted pose forms a valid pose and a valid movement. During training, we explicitly mask out some keypoints to simulate various occlusion cases, from minor to severe occlusion, so that our network can learn better and becomes robust to various degrees of occlusion. As there are limited 3D ground-truth data, we further utilize 2D video data to inject a semi-supervised learning capability to our network. Experiments on public datasets validate the effectiveness of our method, and our ablation studies show the strengths of our network\'s individual submodules.Comment: 8 pages, AAAI 202
    corecore