9 research outputs found

    Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation

    Full text link
    Monocular 3D object detection task aims to predict the 3D bounding boxes of objects based on monocular RGB images. Since the location recovery in 3D space is quite difficult on account of absence of depth information, this paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task. Different from the widely studied 2D bounding boxes, the proposed novel structured polygon in the 2D image consists of several projected surfaces of the target object. Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection. In order to inversely project the predicted 2D structured polygon to a cuboid in the 3D physical world, the following depth recovery task uses the object height prior to complete the inverse projection transformation with the given camera projection matrix. Moreover, a fine-grained 3D box refinement scheme is proposed to further rectify the 3D detection results. Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.Comment: 11 pages, 8 figures, AAAI202

    M3DSSD: Monocular 3D Single Stage Object Detector

    Full text link
    In this paper, we propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention. Current anchor-based monocular 3D object detection methods suffer from feature mismatching. To overcome this, we propose a two-step feature alignment approach. In the first step, the shape alignment is performed to enable the receptive field of the feature map to focus on the pre-defined anchors with high confidence scores. In the second step, the center alignment is used to align the features at 2D/3D centers. Further, it is often difficult to learn global information and capture long-range relationships, which are important for the depth prediction of objects. Therefore, we propose a novel asymmetric non-local attention block with multi-scale sampling to extract depth-wise features. The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset, in both 3D object detection and bird's eye view tasks.Comment: Accepted to CVPR 202

    Rethinking Pseudo-LiDAR Representation

    Full text link
    The recently proposed pseudo-LiDAR based 3D detectors greatly improve the benchmark of monocular/stereo 3D detection task. However, the underlying mechanism remains obscure to the research community. In this paper, we perform an in-depth investigation and observe that the efficacy of pseudo-LiDAR representation comes from the coordinate transformation, instead of data representation itself. Based on this observation, we design an image based CNN detector named Patch-Net, which is more generalized and can be instantiated as pseudo-LiDAR based 3D detectors. Moreover, the pseudo-LiDAR data in our PatchNet is organized as the image representation, which means existing 2D CNN designs can be easily utilized for extracting deep features from input data and boosting 3D detection performance. We conduct extensive experiments on the challenging KITTI dataset, where the proposed PatchNet outperforms all existing pseudo-LiDAR based counterparts. Code has been made available at: https://github.com/xinzhuma/patchnet.Comment: ECCV2020. Supplemental Material attache
    corecore