1,318 research outputs found

    Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation

    Full text link
    To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficient coding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform - Independent Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment.Comment: 22 pages, 9 figure

    Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression

    Get PDF
    This paper addresses the problem of localizing audio sources using binaural measurements. We propose a supervised formulation that simultaneously localizes multiple sources at different locations. The approach is intrinsically efficient because, contrary to prior work, it relies neither on source separation, nor on monaural segregation. The method starts with a training stage that establishes a locally-linear Gaussian regression model between the directional coordinates of all the sources and the auditory features extracted from binaural measurements. While fixed-length wide-spectrum sounds (white noise) are used for training to reliably estimate the model parameters, we show that the testing (localization) can be extended to variable-length sparse-spectrum sounds (such as speech), thus enabling a wide range of realistic applications. Indeed, we demonstrate that the method can be used for audio-visual fusion, namely to map speech signals onto images and hence to spatially align the audio and visual modalities, thus enabling to discriminate between speaking and non-speaking faces. We release a novel corpus of real-room recordings that allow quantitative evaluation of the co-localization method in the presence of one or two sound sources. Experiments demonstrate increased accuracy and speed relative to several state-of-the-art methods.Comment: 15 pages, 8 figure

    Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking, and binaural de-reverberation

    Get PDF
    Room acoustic indicators of intelligibility have focused on the effects of temporal smearing of speech by reverberation and masking by diffuse ambient noise. In the presence of a discrete noise source, these indicators neglect the binaural listener's ability to separate target speech from noise. Lavandier and Culling [(2010). J. Acoust. Soc. Am. 127, 387–399] proposed a model that incorporates this ability but neglects the temporal smearing of speech, so that predictions hold for near-field targets. An extended model based on useful-to-detrimental (U/D) ratios is presented here that accounts for temporal smearing, spatial unmasking, and binaural de-reverberation in reverberant environments. The influence of the model parameters was tested by comparing the model predictions with speech reception thresholds measured in three experiments from the literature. Accurate predictions were obtained by adjusting the parameters to each room. Room-independent parameters did not lead to similar performances, suggesting that a single U/D model cannot be generalized to any room. Despite this limitation, the model framework allows to propose a unified interpretation of spatial unmasking, temporal smearing, and binaural de-reverberation. I. INTROD

    Improving speech intelligibility in hearing aids. Part I: Signal processing algorithms

    Full text link
    [EN] The improvement of speech intelligibility in hearing aids is a traditional problem that still remains open and unsolved. Modern devices may include signal processing algorithms to improve intelligibility: automatic gain control, automatic environmental classification or speech enhancement. However, the design of such algorithms is strongly restricted by some engineering constraints caused by the reduced dimensions of hearing aid devices. In this paper, we discuss the application of state-of-theart signal processing algorithms to improve speech intelligibility in digital hearing aids, with particular emphasis on speech enhancement algorithms. Different alternatives for both monaural and binaural speech enhancement have been considered, arguing whether they are suitable to be implemented in a commercial hearing aid or not.This work has been funded by the Spanish Ministry of Science and Innovation, under project TEC2012-38142-C04-02.Ayllón, D.; Gil Pita, R.; Rosa Zurera, M.; Padilla, L.; Piñero Sipán, MG.; Diego Antón, MD.; Ferrer Contreras, M.... (2014). Improving speech intelligibility in hearing aids. Part I: Signal processing algorithms. Waves. 6:61-71. http://hdl.handle.net/10251/57901S6171

    Single-Microphone Speech Separation: The use of Speech Models

    Get PDF
    • …
    corecore