59,067 research outputs found

    The Orbital Angular Momentum of Light for Ultra-High Capacity Data Centers

    Get PDF
    The potential of orbital angular momentum (OAM) of light in data center scenarios is presented. OAMs can be exploited for short reach ultra-high bit rate fiber links and as additional multiplexing domain in transparent ultra-high capacity optical switches. Recent advances on OAM integrated photonic technology are also reported. Finally demonstration of OAM-based fiber links (aggregate throughput 17.9 Tb/s) and two layers OAM-WDM-based optical switches are presented exploiting OAM integrated components and demonstrating the achievable benefits in terms of size, weight and power consumption (SWaP) compared to different technologies

    Efficient generation and control of different order orbital angular momentum states for communication links

    Get PDF
    We present a novel optical device to encode and decode two bits of information into different Orbital Angular Momentum (OAM) states of a paraxial optical beam. Our device generates the four angular momentum states of order ±2\pm 2 and ±4\pm4 by Spin-To-Orbital angular momentum Conversion (STOC) in a triangular optical loop arrangement. The switching among the four OAM states is obtained by changing the polarization state of the circulating beam by two quarter wave plates and the two-bit information is transferred to the beam OAM exploiting a single qq-plate. The polarization of the exit beam is left free for additional one bit of information. The transmission bandwidth of the device may be as large as several megahertz if electro-optical switches are used to change the beam polarization. This may be particularly useful in communication system based on light OAM.Comment: 5 pages, 5 figures, 1 table. Submitte

    Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Full text link
    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded \qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of OAM ℓ\ell. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge qq. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the OAM changes in value by ℓ=±2qℏ\ell = \pm2q\hbar per photon. We experimentally demonstrate ℓ\ell values ranging from ±1\pm 1 to ±25\pm 25 with conversion efficiencies of 8.6±0.4 %8.6\pm0.4~\%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations and nano-scale sensing.Comment: 4 pages, 3 figures - submitted
    • …
    corecore