6 research outputs found

    Path-sum solution of the Weyl Quantum Walk in 3+1 dimensions

    Full text link
    We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group Z3\mathbb Z^3, that in an appropriate regime evolves according to Weyl's equation. The Weyl quantum walk was recently derived as the unique unitary evolution on a Cayley graph of Z3\mathbb Z^3 that is homogeneous and isotropic. The general solution of the quantum walk evolution is provided here in the position representation, by the analytical expression of the propagator, i.e. transition amplitude from a node of the graph to another node in a finite number of steps. The quantum nature of the walk manifests itself in the interference of the paths on the graph joining the given nodes. The solution is based on the binary encoding of the admissible paths on the graph and on the semigroup structure of the walk transition matrices.Comment: 13 page

    Staggered Quantum Walks With Hamiltonians

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Quantum walks are recognizably useful for the development of new quantum algorithms, as well as for the investigation of several physical phenomena in quantum systems. Actual implementations of quantum walks face technological difficulties similar to the ones for quantum computers, though. Therefore, there is a strong motivation to develop new quantum-walk models which might be easier to implement. In this work we present an extension of the staggered quantum walk model that is fitted for physical implementations in terms of time-independent Hamiltonians. We demonstrate that this class of quantum walk includes the entire class of staggered quantum walk model, Szegedy's model, and an important subset of the coined model.951Faperj [E-26/102.350/2013]CNPq [303406/20151, 474143/2013-9, PDJ 165941/2014-6]FAPESP through the Research Center in Optics and Photonics (CePOF)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore