228,837 research outputs found
Silicon-based molecular electronics
Molecular electronics on silicon has distinct advantages over its metallic
counterpart. We describe a theoretical formalism for transport through
semiconductor-molecule heterostructures, combining a semi-empirical treatment
of the bulk silicon bandstructure with a first-principles description of the
molecular chemistry and its bonding with silicon. Using this method, we
demonstrate that the presence of a semiconducting band-edge can lead to a novel
molecular resonant tunneling diode (RTD) that shows negative differential
resistance (NDR) when the molecular levels are driven by an STM potential into
the semiconducting band-gap. The peaks appear for positive bias on a p-doped
and negative for an n-doped substrate. Charging in these devices is compromised
by the RTD action, allowing possible identification of several molecular
highest occupied (HOMO) and lowest unoccupied (LUMO) levels. Recent experiments
by Hersam et al. [1] support our theoretical predictions.Comment: Author list is reverse alphabetical. All authors contributed equally.
Email: rakshit/liangg/ ghosha/[email protected]
Spiers Memorial Lecture: Molecular mechanics and molecular electronics
We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable [2]rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits
Molecular Electronics
Molecular electronics describes the field in which molecules are utilized as the active (switching, sensing, etc.) or passive (current rectifiers, surface passivants) elements in electronic devices. This review focuses on experimental aspects of molecular electronics that researchers have elucidated over the past decade or so and that relate to the fabrication of molecular electronic devices in which the molecular components are readily distinguished within the electronic properties of the device. Materials, fabrication methods, and methods for characterizing electrode materials, molecular monolayers, and molecule/electrode interfaces are discussed. A particular focus is on devices in which the molecules or molecular monolayer are sandwiched between two immobile electrodes. Four specific examples of such devices, in which the electron transport characteristics reflect distinctly molecular properties, are discussed
Nucleophilicity/Electrophilicity Excess in Analyzing Molecular Electronics
Intramolecular electron transfer capability of all metal aromatic and
anti-aromatic aluminum cluster compounds is studied in terms of density
functional theory based global and local reactivity descriptors. This study
will provide important inputs towards the fabrication of the material required
for molecular electronics.Comment: 21 pages, 6 figures, 13 table
The role of contacts in molecular electronics
Molecular electronic devices are the upmost destiny of the miniaturization
trend of electronic components. Although not yet reproducible on large scale,
molecular devices are since recently subject of intense studies both
experimentally and theoretically, which agree in pointing out the extreme
sensitivity of such devices on the nature and quality of the contacts. This
chapter intends to provide a general theoretical framework for modelling
electronic transport at the molecular scale by describing the implementation of
a hybrid method based on Green function theory and density functional
algorithms. In order to show the presence of contact-dependent features in the
molecular conductance, we discuss three archetypal molecular devices, which are
intended to focus on the importance of the different sub-parts of a molecular
two-terminal setup.Comment: 17 pages, 8 figure
Intermolecular Effect in Molecular Electronics
We investigate the effects of lateral interactions on the conductance of two
molecules connected in parallel to semi-infinite leads. The method we use
combines a Green function approach to quantum transport with density functional
theory for the electronic properties. The system, modeled after a
self-assembled monolayer, consists of benzylmercaptane molecules sandwiched
between gold electrodes. We find that the conductance increases when
intermolecular interaction comes into play. The source of this increase is the
indirect interaction through the gold substrate rather than direct
molecule-molecule interaction. A striking resonance is produced only 0.3 eV
above the Fermi energy.Comment: 4 pages, 5 figure
- …
