40 research outputs found

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    Curiosity as a Self-Supervised Method to Improve Exploration in De novo Drug Design

    Full text link
    In recent years, deep learning has demonstrated promising results in de novo drug design. However, the proposed techniques still lack an efficient exploration of the large chemical space. Most of these methods explore a small fragment of the chemical space of known drugs, if the desired molecules were not found, the process ends. In this work, we introduce a curiosity-driven method to force the model to navigate many parts of the chemical space, therefore, achieving higher desirability and diversity as well. At first, we train a recurrent neural network-based general molecular generator (G), then we fine-tune G to maximize curiosity and desirability. We define curiosity as the Tanimoto similarity between two generated molecules, a first molecule generated by G, and a second one generated by a copy of G (Gcopy). We only backpropagate the loss through G while keeping Gcopy unchanged. We benchmarked our approach against two desirable chemical properties related to drug-likeness and showed that the discovered chemical space can be significantly expanded, thus, discovering a higher number of desirable molecules with more diversity and potentially easier to synthesize. All Code and data used in this paper are available at https://github.com/amine179/Curiosity-RL-for-Drug-Design

    Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space

    Get PDF
    Challenges in natural sciences can often be phrased as optimization problems. Machine learning techniques have recently been applied to solve such problems. One example in chemistry is the design of tailor-made organic materials and molecules, which requires efficient methods to explore the chemical space. We present a genetic algorithm (GA) that is enhanced with a neural network (DNN) based discriminator model to improve the diversity of generated molecules and at the same time steer the GA. We show that our algorithm outperforms other generative models in optimization tasks. We furthermore present a way to increase interpretability of genetic algorithms, which helped us to derive design principles.Comment: 9+3 Pages, 7+4 figures, 2 tables. Comments are welcome! (code is available at: https://github.com/aspuru-guzik-group/GA
    corecore