12,022 research outputs found

    Trend Detection based Regret Minimization for Bandit Problems

    Full text link
    We study a variation of the classical multi-armed bandits problem. In this problem, the learner has to make a sequence of decisions, picking from a fixed set of choices. In each round, she receives as feedback only the loss incurred from the chosen action. Conventionally, this problem has been studied when losses of the actions are drawn from an unknown distribution or when they are adversarial. In this paper, we study this problem when the losses of the actions also satisfy certain structural properties, and especially, do show a trend structure. When this is true, we show that using \textit{trend detection}, we can achieve regret of order O~(NTK)\tilde{O} (N \sqrt{TK}) with respect to a switching strategy for the version of the problem where a single action is chosen in each round and O~(NmTK)\tilde{O} (Nm \sqrt{TK}) when mm actions are chosen each round. This guarantee is a significant improvement over the conventional benchmark. Our approach can, as a framework, be applied in combination with various well-known bandit algorithms, like Exp3. For both versions of the problem, we give regret guarantees also for the \textit{anytime} setting, i.e. when the length of the choice-sequence is not known in advance. Finally, we pinpoint the advantages of our method by comparing it to some well-known other strategies

    MoNoise: Modeling Noise Using a Modular Normalization System

    Get PDF
    We propose MoNoise: a normalization model focused on generalizability and efficiency, it aims at being easily reusable and adaptable. Normalization is the task of translating texts from a non- canonical domain to a more canonical domain, in our case: from social media data to standard language. Our proposed model is based on a modular candidate generation in which each module is responsible for a different type of normalization action. The most important generation modules are a spelling correction system and a word embeddings module. Depending on the definition of the normalization task, a static lookup list can be crucial for performance. We train a random forest classifier to rank the candidates, which generalizes well to all different types of normaliza- tion actions. Most features for the ranking originate from the generation modules; besides these features, N-gram features prove to be an important source of information. We show that MoNoise beats the state-of-the-art on different normalization benchmarks for English and Dutch, which all define the task of normalization slightly different.Comment: Source code: https://bitbucket.org/robvanderg/monois

    Learning by Asking Questions

    Full text link
    We introduce an interactive learning framework for the development and testing of intelligent visual systems, called learning-by-asking (LBA). We explore LBA in context of the Visual Question Answering (VQA) task. LBA differs from standard VQA training in that most questions are not observed during training time, and the learner must ask questions it wants answers to. Thus, LBA more closely mimics natural learning and has the potential to be more data-efficient than the traditional VQA setting. We present a model that performs LBA on the CLEVR dataset, and show that it automatically discovers an easy-to-hard curriculum when learning interactively from an oracle. Our LBA generated data consistently matches or outperforms the CLEVR train data and is more sample efficient. We also show that our model asks questions that generalize to state-of-the-art VQA models and to novel test time distributions

    Interactive Text2Pickup Network for Natural Language based Human-Robot Collaboration

    Full text link
    In this paper, we propose the Interactive Text2Pickup (IT2P) network for human-robot collaboration which enables an effective interaction with a human user despite the ambiguity in user's commands. We focus on the task where a robot is expected to pick up an object instructed by a human, and to interact with the human when the given instruction is vague. The proposed network understands the command from the human user and estimates the position of the desired object first. To handle the inherent ambiguity in human language commands, a suitable question which can resolve the ambiguity is generated. The user's answer to the question is combined with the initial command and given back to the network, resulting in more accurate estimation. The experiment results show that given unambiguous commands, the proposed method can estimate the position of the requested object with an accuracy of 98.49% based on our test dataset. Given ambiguous language commands, we show that the accuracy of the pick up task increases by 1.94 times after incorporating the information obtained from the interaction.Comment: 8 pages, 9 figure
    corecore