271,498 research outputs found

    Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Get PDF
    The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC) technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits) was achieved

    Design methodology for a maximum sequence length MASH digital delta-sigma modulator

    Get PDF
    The paper proposes a novel structure for a MASH digital delta-sigma modulator (DDSM) in order to achieve a long sequence length. The expression for the sequence length is derived. The condition to produce the maximum sequence length is also stated. It is proved that the modulator output only depends on the structure of the first-order error feedback modulator (EFM1) which is the first stage of a Multi-stAge noise SHaping (MASH) modulator

    60 GHz and 94 GHz antenna-coupled LiNbO_3 electrooptic modulators

    Get PDF
    Antenna-coupled LiBbO_3 electrooptic modulators can overcome the material dispersion which would otherwise prevent sensitive high-frequency operation. The authors previously demonstrated the concept with a phase modulator at X-band. They have extended this demonstration to a narrowband 60-GHz phase modulator and broadband amplitude modulator designs at 60 and 94 GHz, respectively

    Magnetically coupled emission regulator

    Get PDF
    Magnetic coupling between input and power handling circuits isolates high voltage. A feedback regulator samples the ion source bias current and provides deviation signals to a magnetic amplifier pulse modulator. The pulse modulator controls the dc to ac power inverter which in turn, controls the emission current

    Opto-Acoustic Oscillator Using Silicon Mems Optical Modulator

    Full text link
    We show operation of a silicon MEMS based narrow-band optical modulator with large modulation depth by improving the electro-mechanical transducer. We demonstrate an application of the narrowband optical modulator as both the filter and optical modulator in an opto-electronic oscillator loop to obtain a 236.22 MHz Opto-Acoustic Oscillator (OAO) with phase noise of -68 dBc/Hz at 1 kHz offset

    Double-sampled cascaded sigma-delta modulator topologies for low oversampling ratios

    Get PDF
    This paper presents novel double-sampling cascaded sigma-delta modulator topologies for wideband applications. The proposed modulator structures employ finite impulse response (FIR) noise transfer function (NTF) to achieve the aggressive noise shaping with an additional zero at the half of the sampling frequency to alleviate the quantization noise folding. Cascading of the proposed modulator structures is very simple without any additional circuit requirements.Comisión Interministerial de Ciencia y Tecnología TIC2003-0235

    An optical modulator based on a single strongly coupled quantum dot - cavity system in a p-i-n junction

    Get PDF
    We demonstrate an optical modulator based on a single quantum dot strongly coupled to a photonic crystal cavity. A vertical p-i-n junction is used to tune the quantum dot and thereby modulate the cavity transmission, with a measured instrument-limited response time of 13 ns. A modulator based on a single quantum dot promises operation at high bandwidth and low power

    A 5-MHz 11-bit delay-based self-oscillating ΣΔ modulator in 0.025 mm2

    Get PDF
    In this paper a self-oscillating Sigma Delta modulator is presented. By introducing this self-oscillation in the system, the loop filter operates at a speed significantly lower than dictated by the clock frequency. This allows for a simple and power efficient design of the opamps used in the loop filter. The self-oscillation is induced here by introducing a controlled delay in the feedback loop of the modulator. A second order CMOS prototype was constructed in a 0.18 um technology. A clock frequency of 850MHz generates a self-oscillation mode at 106.25 MHz. The modulator achieves a dynamic range (DR) of 66 dB for a signal bandwidth of 5 MHz. The power consumption is only 6mW and the chip area of the modulator core is 0.025mm^2
    corecore