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Abstract—The paper proposes a novel structure for
a MASH digital delta-sigma modulator (DDSM) in
order to achieve a long sequence length. The expres-
sion for the sequence length is derived. The condi-
tion to produce the maximum sequence length is also
stated. It is proved that the modulator output only
depends on the structure of the first-order error feed-
back modulator (EFM1) which is the first stage of a
Multi-stAge noise SHaping (MASH) modulator.
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1 Introduction

Fractional-N Frequency Synthesizers [1] are widely used
in modern communication systems. In general, they work
as Local Oscillators (LO) to generate the exact required
frequencies. The digital delta-sigma modulator (DDSM)
acts as the controller of the multi-modulus frequency di-
vider in the feedback loop of the frequency synthesizer.
The most attractive property of DSMs is that they push
most of the quantisation noise to higher frequencies and
hence out of the useful frequency band. Thus the noise
can simply be filtered without affecting the input signal.

Since the DDSM is a finite state machine, when the in-
put is a DC rational constant, the output is always a
repeating pattern (limit cycle) [9] [10]. The period of
the cycle is termed the sequence length. For this type
of input, the quantization noise is periodic. When a se-
quence length is short, the power is distributed among
spurious spurs that appear in the DDSM output spec-
trum. Hence, there is a desire to break short sequences.
Dithering [14] [15] is one of the most commonly employed
methods to break the short sequence length. However,
it requires extra hardware and inherently introduces ad-
ditional inband noise. Recently, some design methodolo-
gies have been proposed to maximise the sequence length.
Borkowski [9] summarises the guaranteed and maximum
period obtained by setting the initial condition of the reg-
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Figure 1: MASH DDSM architecture.

isters in a EFM. Hosseini [16] introduced a digital delta-
sigma modulator structure termed the HK-MASH with
a very long sequence. The period of the HK-MASH is
proven by mathematical analysis [16] [17]. This paper
proposes a novel design methodology to further increase
the modulator sequence length.

In Section 2, the architectures of the classic MASH
DDSM and the HK-MASH are reviewed. In Section 3, a
novel structure is proposed that results in the maximum
sequence length. The expression for the sequence length
is derived as well. The simulation results are shown in
Section 4.

2 Previous Work

The architecture of an lth order MASH digital delta-
sigma modulator (DDSM) is illustrated in Fig. 1. It
contains l first-order error-feedback modulators (EFM1).
x[n] and y[n] are an n0 bit input digital word and an m
bit output, respectively. The relationship between them
is

mean(y) =
X

M
(1)

where X is the decimal number corresponding to the dig-
ital sequence x[n] [16], i.e., x[n] = X ∈ {1, 2, ...,M − 1},
and M is the quantizer modulus which is set as 2n0 in
the DDSM.

The model of the EFM1 is shown in Fig. 2, which is the
central component in the make-up of the MASH digital
delta-sigma modulator (DDSM). The rectangle Z−1 rep-
resents the register to store the error e[n] and delay it for
one sample time. Q(·) is the quantization function:
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Figure 2: EFM1: First-order error-feedback modulator.

y[n] = Q(u[n]) =
{

1, u[n] ≥ M
0, u[n] < M

(2)

where
u[n] = x[n] + e[n− 1]. (3)

The maximum sequence lengths for this structure has
been found from simulations [9], and are as illustrated
in Table 1. To achieve the maximum period, the first
stage EFM1 must have an odd initial condition. This is
implemented by setting the register.

Table 1: The sequence length summarised in [9].
Modulator Order Maximum Period

2 2n0+1

3 2n0+1

4 2n0+2

5 2n0+2

The architecture of the modified EFM1 used in the HK-
MASH is illustrated in Fig. 3. The only difference be-
tween it and the classic EFM1 in Fig. 2 is the presence of
the feedback block aZ−1. a is a specially-chosen small in-
teger to make (M−a) the maximum prime number below
2n0 [16]. The sequence length of it is (2n0 − a)l ≈ (2n0)l.
This value will be compared with that of the proposed
MASH in Section 4.

Figure 3: HK-EFM1: The modified EFM1 used in HK-
MASH.

3 The Proposed Structure

In this section, a novel structure for the MASH DDSM is
introduced, which produces a long sequence length. The

HK-EFM1, shown in Fig. 3, is utilised to form the new
structure. The small positive integer a in ith stage of
HK-EFM1 is denoted as ai. This value will be assumed
to be different for each stage.

The values of ai are chosen to make {M − a1,M −
a2, ...,M − al} co-prime numbers to maximise the se-
quence length, which will be demonstrated in Theorem
1. Thus, in an lth order proposed MASH, there are l co-
prime numbers around 2n0 that need to be found. The
higher the modulator order, the more co-prime numbers
that need to be confirmed. This results in greater diffi-
culty in finding suitable values for ai. Fortunately, the
most popular MASH DDSM in modern communication
systems is the 3rd order one [9]. A few values of ai chosen
by the authors are given in Table 2. Note that in order
to make the sequence length independent of the input,
M − a1 is set as a prime number [16] [17]. The difference
between a co-prime number and a prime number [20] is
stated as below:

1. A prime number is a natural number which has ex-
actly two divisors: 1 and itself.

2. If the greatest common divisor of any two numbers
is 1, they are co-prime numbers. They do NOT have
to be prime numbers, such as 8 and 9.

In Theorem 2, it is proven that the required output,
mean(y), depends only on the first stage EFM1. Hence,
M − a1 is set as a prime number around 2n0 . This is to
make X and M1 always co-prime numbers and therefore
to make the sequence length independent of the value of
input. In order to maintain the modulator output accu-
racy, the value of the input DC X is adjusted to

X = (M − a1) ·mean(y) (4)

where mean(y) is the required output to control the static
frequency divider in a fractional-N frequency synthesizer.

Table 2: Some values of ai in proposed MASH 1-1-1.
Word length a1 a2 a3

5 bit 1 0 3
8 bit 5 0 1
9 bit 3 0 1
10 bit 3 0 1
11 bit 9 0 1

Theorem 1. If {M−a1,M−a2, ...,M−al} are co-prime
numbers, the sequence length attains its maximum value.



Proof. In the first-stage EFM1 illustrated in Fig. 3,

e1[1] =u[1]− y1[1]M
=X + e1[0] + y1[0]a1 − y1[1]M (5)

e1[2] =X + e1[1] + y1[1]a1 − y1[2]M (6)
...

e1[N1] =X + e1[N1 − 1] + y1[N1 − 1]a1 − y1[N1]M (7)

The sum of all of the above equations is:

N1∑
k=1

e1[k] = N1X+
N1−1∑
k=0

e1[k]+
N1−1∑
k=0

y1[k]a1−
N1∑
k=1

y1[k]M.

(8)
Since in the steady state, the first EFM1 is periodic with
a period N1 [17],

N1∑
k=1

e1[k] =
N1−1∑
k=0

e1[k]. (9)

Hence, (8) may be modified to

N1∑
k=1

e1[k] = N1X+
N1∑
k=1

e1[k] +
N1∑
k=1

y1[k]a1 −
N1∑
k=1

y1[k]M.

(10)

Thus
N1∑
k=1

y1[k] =
N1X

M − a1
. (11)

In practice, the input DC X is set as 0 < X < M − a1.
So in order to make the right side of (11) an integer, the
minimum nonzero solution of N1 has to be:

N1 =
M − a1

λ1
(12)

where λ1 is the greatest common divider of M − a1 and
X. Since M − a1 is chosen as a prime number, M − a1

and X are always co-prime numbers. Hence, λ1 equals
to 1.

N1 = M − a1 (13)

If the process of (5)–(11) is repeated with the second
EFM1, the sum of its output with a period N2 is obtained
as:

N2∑
k=1

y2[k] =

N2∑
k=1

e1[k]

M − a2
. (14)

If the relationship between the sequence length of the first
and second stages is:

N2 = K1N1 (15)

(14) becomes

N2∑
k=1

y2[k] =
K1

N1∑
k=1

e1[k]

M − a2
. (16)

Since e1 is periodic with a sequence length N1 [16], and
recalling (13),

N1∑
k=1

e1[k] = (M − a1) ·mean(e1). (17)

On substitution of (17) into (16), a clearer expression is
obtained:

N2∑
k=1

y2[k] =
K1 · (M − a1) ·mean(e1)

M − a2
. (18)

The minimum solution of K1 in (18) is

K1 =
M − a2

λ2
(19)

where λ2 is the greatest common divider of M − a2 and
(M−a1)·mean(e1). Substituting (13) and (19) into (15),
the sequence length of the second stage is:

N2 =
(M − a1)(M − a2)

λ2
. (20)

If M −a1 and M −a2 are co-prime numbers, the greatest
common divider of M − a2 and (M − a1)mean(e1) is 1.
Thus the maximum sequence length for y2 is obtained as:

N2 max = (M − a1)(M − a2). (21)

Continuing in this manner, the sequence length of the ith
effective stage EFM1 in an lth order MASH modulator
is:

Ni =
(M − a1)(M − a2)...(M − ai)

λi
(22)

where i ∈ {1, 2, 3, ..., l}, and λi is the maximum com-
mon divider of M − ai and (M − a1)(M − a2)...(M −
ai−1)mean(ei−1). Note that when i = 1, mean(e0) = X
and M − a0 = 1.

If {(M−a1), (M−a2),...,(M−ai)} are co-prime numbers,
λi = 1. Thus the maximum sequence length of the ith
stage EFM1 is:

Ni max = (M − a1)(M − a2)...(M − ai). (23)

As seen in Fig. 1, the output of the MASH modulator
is obtained by simply summing and/or subtracting the
output of each EFM1. Hence, the period of the MASH
DDSM is the least common multiple of the sequence
length of each stage:



N =
(M − a1)(M − a2)...(M − ai−1)

λ
(24)

where λ is the least common multiple of {λ1, λ2, ..., λl}.
When {M1,M2, ...,Ml} are co-prime numbers, λ becomes
1. Thus the maximum sequence length is:

Nmax = (M − a1)(M − a2)...(M − al). (25)

Theorem 2. The modulator output depends only on the
first stage EFM1.

Proof. As seen in Fig. 1, at the output of the last adder,

vl−1[1] =yl−1[1] + yl[1]− yl[0] (26)
vl−1[2] =yl−1[2] + yl[2]− yl[1] (27)

...
vl−1[N ] =yl−1[N ] + yl[N ]− yl[N − 1] (28)

where N is assumed as the sequence length of the MASH
delta-sigma modulator. Adding all of the above equations
yields:

N∑
k=1

vl−1[k] =
N∑

k=1

yl−1[k] +
N∑

k=1

yl[k]−
N−1∑
k=0

yl[k]. (29)

Since the modulator sequence length, N , is a multiple of
the period of any single stage, Ni, it follows that

N∑
k=1

yl[k] =
N−1∑
k=0

yl[k]. (30)

Thus:
N∑

k=1

vl−1[k] =
N∑

k=1

yl−1[k]. (31)

Similarly, the output of each of the other adders is ob-
tained:

N∑
k=1

vl−2[k] =
N∑

k=1

yl−2[k] (32)

...
N∑

k=1

v2[k] =
N∑

k=1

y2[k] (33)

N∑
k=1

y[k] =
N∑

k=1

y1[k] (34)

By combining with (11), the right-hand side of (34) may
be expressed as:

N∑
k=1

y1[k] = K

N1∑
k=1

y1[k] = K ·N1 ·
X

M − a1
(35)

where N1 is the sequence length of y1, K is an integer and
N = K ·N1. By substituting (35) into (34), the average
value of the MASH DDSM output y is determined as:

mean(y) =

N∑
k=1

y[k]

N
=

N∑
k=1

y1[k]

K ·N1
=

X

M − a1
. (36)

To sum up, the average value of the output is controlled
only by the value M − a1 in the first stage EFM1 and is
independent of other stages.

4 The Simulation Results

All of the models of the EFM1 and MASH DDSM are
built and simulated in Simulink. The sequence length
of the MASH DDSM is determined using the autocor-
relation function [9]. As shown in Fig. 4, the sequence
length of a 5-bit MASH 1-1-1 of the proposed form is
28768 = (M −a1) · (M −a2) · (M −a3) shown in Table 2.
The sequence length of the HK-MASH and the proposed
MASH are compared in Table 3. The sequence length of
the proposed structure is greater and hence preferable.
A longer sequence length means the noise spur is further
out of the required modulation spectrum.
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Figure 4: The autocorrelation result for the 5-bit pro-
posed MASH 1-1-1.

Table 3: A comparison of the sequence lengths for the
HK-MASH and proposed MASH.

Word length HK-MASH Proposed Difference
8 bit 15.81× 106 16.39× 106 +0.58× 106

9 bit 131.87× 106 133.17× 106 +1.3× 106

10 bit 1.06× 109 1.07× 109 +10× 106

11 bit 8.48× 109 8.55× 109 +70× 106



The power spectral density [22] of the 8-bit proposed
MASH 1-1-1 and a dithered 8-bit MASH 1-1-1 is com-
pared in Fig. 5. The proposed MASH has a better
low-frequency noise floor than the classic MASH DDSM.
Thus, it is a recommended structure.

Figure 5: The power spectral density of the dithered clas-
sic MASH DDSM and non-dithered proposed MASH.

5 Conclusion

A novel structure for the MASH digital delta-sigma mod-
ulator is proposed. It produces a very large sequence
length and this is compared with that of the HK-MASH.
The predicted sequence length of the proposed MASH
DDSM is validated by simulation.

The power spectral density spectrum confirms that the
proposed modulator architecture is more effective than
the dithering method at moving noise from the lower fre-
quencies, though dithering is one of the most effective
existing methods for improving the noise performance.

The effect of the structure of the EFM1 is investigated in
the paper. In particular, the effect of the value of M −ai

in the MASH digital delta-sigma modulator (DDSM) is
explored. It is found that the output of the MASH modu-
lator is only dependent on the structure of the first stage
EFM1 and independent of the others. The expression for
the sequence length of the EFM1 of each stage and the
MASH DDSM are derived. The condition to yield the
maximum modulator period is also given.
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