8,134 research outputs found

    Diversity techniques for blind channel equalization in mobile communications

    Get PDF
    A blind algorithm for channel distortion compensation is presented which can be employed in spatial or temporal diversity receivers. The proposed technique can be used in frequency selective and frequency flat fading mobile channels, using burst transmission schemes in the first case and OFDM modulation in the second one. The algorithm is base on a deterministic criteria and is suited for estimation when short sets of data are available.Peer ReviewedPostprint (published version

    Combining PSA fading estimation techniques for TCM and diversity reception in Rician fading channels

    Get PDF
    In this paper, a novel pilot-symbol-aided (PSA) technique is proposed for fading estimation in the land mobile satellite fading channels. The proposed technique combines the fading estimates obtained from a bandwidth-efficient technique and a conventional technique according to the signal-to-noise ratios (SNRs) of the fading estimates. To enhance the transmission quality, trellis-coded modulation (TCM) and diversity reception are employed in the system, and the combined estimates are subsequently used to correct the channel fading effects, to weight the signals from different diversity branches, and to provide channel state information of the Viterbi decoder. Monte Carlo computer simulation has been used to study the bit-error-rate (BER) performance of the proposed technique on trellis-coded 16-ary quadrature amplitude modulation in the frequency non-selective Rician fading channels. Results have shown that the proposed PSA technique requires a very low bandwidth redundancy to provide satisfactory BER performance at low SNRs, and thus is suitable for use with TCM and diversity reception to achieve both bandwidth and power-efficient transmission.postprin

    TCM for OFDM-IM

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) with index modulation (IM) is a multicarrier transmission technique for frequency-selective fading channels. Although it is energy and spectral efficient, its performance may not be satisfactory as some active subcarriers can be suppressed by fading. In this letter, we consider trellis coded modulation (TCM) for OFDM-IM in order to improve the detection performance of active subcarriers by increasing the Hamming distance between index symbols. We devise mapping rules for TCM for two cases and it is shown that the diversity order can be improved, which results in a lower probability of index error

    Residue number system coded differential space-time-frequency coding.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2007.The rapidly growing need for fast and reliable transmission over a wireless channel motivates the development of communication systems that can support high data rates at low complexity. Achieving reliable communication over a wireless channel is a challenging task largely due to the possibility of multipaths which may lead to intersymbol interference (ISI). Diversity techniques such as time, frequency and space are commonly used to combat multipath fading. Classical diversity techniques use repetition codes such that the information is replicated and transmitted over several channels that are sufficiently spaced. In fading channels, the performance across some diversity branches may be excessively attenuated, making throughput unacceptably small. In principle, more powerful coding techniques can be used to maximize the diversity order. This leads to bandwidth expansion or increased transmission power to accommodate the redundant bits. Hence there is need for coding and modulation schemes that provide low error rate performance in a bandwidth efficient manner. If diversity schemes are combined, more independent dimensions become available for information transfer. The first part of the thesis addresses achieving temporal diversity through employing error correcting coding schemes combined with interleaving. Noncoherent differential modulation does not require explicit knowledge or estimate of the channel, instead the information is encoded in the transitions. This lends itself to the possibility of turbo-like serial concatenation of a standard outer channel encoder with an inner modulation code amenable to noncoherent detection through an interleaver. An iterative approach to joint decoding and demodulation can be realized by exchanging soft information between the decoder and the demodulator. This has been shown to be effective and hold hope for approaching capacity over fast fading channels. However most of these schemes employ low rate convolutional codes as their channel encoders. In this thesis we propose the use of redundant residue number system codes. It is shown that these codes can achieve comparable performance at minimal complexity and high data rates. The second part deals with the possibility of combining several diversity dimensions into a reliable bandwidth efficient communication scheme. Orthogonal frequency division multiplexing (OFDM) has been used to combat multipaths. Combining OFDM with multiple-input multiple-output (MIMO) systems to form MIMO-OFDM not only reduces the complexity by eliminating the need for equalization but also provides large channel capacity and a high diversity potential. Space-time coded OFDM was proposed and shown to be an effective transmission technique for MIMO systems. Spacefrequency coding and space-time-frequency coding were developed out of the need to exploit the frequency diversity due to multipaths. Most of the proposed schemes in the literature maximize frequency diversity predominantly from the frequency-selective nature of the fading channel. In this thesis we propose the use of residue number system as the frequency encoder. It is shown that the proposed space-time-frequency coding scheme can maximize the diversity gains over space, time and frequency domains. The gain of MIMO-OFDM comes at the expense of increased receiver complexity. Furthermore, most of the proposed space-time-frequency coding schemes assume frequency selective block fading channels which is not an ideal assumption for broadband wireless communications. Relatively high mobility in broadband wireless communications systems may result in high Doppler frequency, hence time-selective (rapid) fading. Rapidly changing channel characteristics impedes the channel estimation process and may result in incorrect estimates of the channel coefficients. The last part of the thesis deals with the performance of differential space-time-frequency coding in fast fading channels

    Space-Time-Frequency Shift Keying for Dispersive Channels

    No full text
    Inspired by the concept of the Space-Time Shift Keying (STSK) modulation, in this paper we proposed the Space-Frequency Shift Keying (SFSK) modulation as well as the Space-Time-Frequency Shift Keying (STFSK) concept which spreads the transmit signal not only across the space and time domains, but also the frequency domain. The performance of STSK modulation is degraded by about 2 dB, when the channel changes from uncorrelated frequency-flat fading to the frequency-selective environment of the 6-tap COST207 model. By contrast, as a benefit of Frequency Shift keying, the SFSK and STFSK schemes are capable of maintaining their performance also in frequency-selective fading environments. Finally, we demonstrate that the STSK and SFSK schemes constitute special cases of the STFSK modulatio

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Co-Channel Interference Cancellation in OFDM Networks using Coordinated Symbol Repetition and Soft Decision MLE CCI Canceler

    Full text link
    In this paper, a new scheme of downlink co-channel interference (CCI) cancellation in OFDM cellular networks is introduced for users at the cell-edge. Coordinated symbol transmission between base stations (BS) is operated where the same symbol is transmitted from different BS on different sub-carriers. At the mobile station (MS) receiver, we introduce a soft decision maximum likelihood CCI canceler and a modified maximum ratio combining (M-MRC) to obtain an estimate of the transmitted symbols. Weights used in the combining method are derived from the channels coefficients between the cooperated BS and the MS. Simulations show that the proposed scheme works well under frequency-selective channels and frequency non-selective channels. A gain of 9 dB and 6 dB in SIR is obtained under multipath fading and flat-fading channels, respectively.Comment: 4 pages, 8 figures, IEEE International Conference on Signal Processing and Communications, 2007. ICSPC 200

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    • 

    corecore