969 research outputs found

    Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers

    Full text link
    In image restoration tasks, like denoising and super resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image restoration methods. Learning from discrete and fixed restoration levels, deep models cannot be easily generalized to data of continuous and unseen levels. This topic is rarely touched in literature, due to the difficulty of modulating well-trained models with certain hyper-parameters. We make a step forward by proposing a unified CNN framework that consists of few additional parameters than a single-level model yet could handle arbitrary restoration levels between a start and an end level. The additional module, namely AdaFM layer, performs channel-wise feature modification, and can adapt a model to another restoration level with high accuracy. By simply tweaking an interpolation coefficient, the intermediate model - AdaFM-Net could generate smooth and continuous restoration effects without artifacts. Extensive experiments on three image restoration tasks demonstrate the effectiveness of both model training and modulation testing. Besides, we carefully investigate the properties of AdaFM layers, providing a detailed guidance on the usage of the proposed method.Comment: Accepted by CVPR 2019 (oral); code is available: https://github.com/hejingwenhejingwen/AdaF

    Always Clear Days: Degradation Type and Severity Aware All-In-One Adverse Weather Removal

    Full text link
    All-in-one adverse weather removal is an emerging topic on image restoration, which aims to restore multiple weather degradation in an unified model, and the challenging are twofold. First, discovering and handling the property of multi-domain in target distribution formed by multiple weather conditions. Second, design efficient and effective operations for different degradation types. To address this problem, most prior works focus on the multi-domain caused by weather type. Inspired by inter\&intra-domain adaptation literature, we observed that not only weather type but also weather severity introduce multi-domain within each weather type domain, which is ignored by previous methods, and further limit their performance. To this end, we proposed a degradation type and severity aware model, called \textbf{UtilityIR}, for blind all-in-one bad weather image restoration. To extract weather information from single image, we proposed a novel Marginal Quality Ranking Loss (MQRL) and utilized Contrastive Loss (CL) to guide weather severity and type extraction, and leverage a bag of novel techniques such as Multi-Head Cross Attention (MHCA) and Local-Global Adaptive Instance Normalization (LG-AdaIN) to efficiently restore spatial varying weather degradation. The proposed method can significantly outperform the SOTA methods subjectively and objectively on different weather restoration tasks with a large margin, and enjoy less model parameters. Proposed method even can restore \textbf{unseen} domain combined multiple degradation images, and modulating restoration level. Implementation code will be available at {https://github.com/fordevoted/UtilityIR}{\textit{this repository}}Comment: 12 pages, 12 figure

    CEL-Net: Continuous Exposure for Extreme Low-Light Imaging

    Full text link
    Deep learning methods for enhancing dark images learn a mapping from input images to output images with pre-determined discrete exposure levels. Often, at inference time the input and optimal output exposure levels of the given image are different from the seen ones during training. As a result the enhanced image might suffer from visual distortions, such as low contrast or dark areas. We address this issue by introducing a deep learning model that can continuously generalize at inference time to unseen exposure levels without the need to retrain the model. To this end, we introduce a dataset of 1500 raw images captured in both outdoor and indoor scenes, with five different exposure levels and various camera parameters. Using the dataset, we develop a model for extreme low-light imaging that can continuously tune the input or output exposure level of the image to an unseen one. We investigate the properties of our model and validate its performance, showing promising results

    Real-World Image Restoration Using Degradation Adaptive Transformer-Based Adversarial Network

    Get PDF
    Most existing learning-based image restoration methods heavily rely on paired degraded/non-degraded training datasets that are based on simplistic handcrafted degradation assumptions. These assumptions often involve a limited set of degradations, such as Gaussian blurs, noises, and bicubic downsampling. However, when these methods are applied to real-world images, there is a significant decrease in performance due to the discrepancy between synthetic and realistic degradation. Additionally, they lack the flexibility to adapt to unknown degradations in practical scenarios, which limits their generalizability to complex and unconstrained scenes. To address the absence of image pairs, recent studies have proposed Generative Adversarial Network (GAN)-based unpaired methods. Nevertheless, unpaired learning models based on convolution operations encounter challenges in capturing long-range pixel dependencies in real-world images. This limitation stems from their reliance on convolution operations, which offer local connectivity and translation equivariance but struggle to capture global dependencies due to their limited receptive field. To address these challenges, this dissertation proposed an innovative unpaired image restoration basic model along with an advanced model. The proposed basic model is the DA-CycleGAN model, which is based on the CycleGAN [1] neural network and specifically designed for blind real-world Single Image Super-Resolution (SISR). The DA-CycleGAN incorporates a degradation adaptive (DA) module to learn various real-world degradations (such as noise and blur patterns) in an unpaired manner, enabling strong flexible adaptation. Additionally, an advanced model called Trans-CycleGAN was designed, which integrated the Transformer architecture into CycleGAN to leverage its global connectivity. This combination allowed for image-to-image translation using CycleGAN [1] while enabling the Transformer to model global connectivity across long-range pixels. Extensive experiments conducted on realistic images demonstrate the superior performance of the proposed method in solving real-world image restoration problems, resulting in clearer and finer details. Overall, this dissertation presents a novel unpaired image restoration basic model and an advanced model that effectively address the limitations of existing approaches. The proposed approach achieves significant advancements in handling real-world degradations and modeling long-range pixel dependencies, thereby offering substantial improvements in image restoration tasks. Index Terms— Cross-domain translation, generative adversarial network, image restoration, super-resolution, transformer, unpaired training
    • …
    corecore