168,289 research outputs found

    Community detection in directed acyclic graphs

    Full text link
    Some temporal networks, most notably citation networks, are naturally represented as directed acyclic graphs (DAGs). To detect communities in DAGs, we propose a modularity for DAGs by defining an appropriate null model (i.e., randomized network) respecting the order of nodes. We implement a spectral method to approximately maximize the proposed modularity measure and test the method on citation networks and other DAGs. We find that the attained values of the modularity for DAGs are similar for partitions that we obtain by maximizing the proposed modularity (designed for DAGs), the modularity for undirected networks and that for general directed networks. In other words, if we neglect the order imposed on nodes (and the direction of links) in a given DAG and maximize the conventional modularity measure, the obtained partition is close to the optimal one in the sense of the modularity for DAGs.Comment: 2 figures, 7 table

    Extension of Modularity Density for Overlapping Community Structure

    Full text link
    Modularity is widely used to effectively measure the strength of the disjoint community structure found by community detection algorithms. Although several overlapping extensions of modularity were proposed to measure the quality of overlapping community structure, there is lack of systematic comparison of different extensions. To fill this gap, we overview overlapping extensions of modularity to select the best. In addition, we extend the Modularity Density metric to enable its usage for overlapping communities. The experimental results on four real networks using overlapping extensions of modularity, overlapping modularity density, and six other community quality metrics show that the best results are obtained when the product of the belonging coefficients of two nodes is used as the belonging function. Moreover, our experiments indicate that overlapping modularity density is a better measure of the quality of overlapping community structure than other metrics considered.Comment: 8 pages in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference o

    Modularity bounds for clusters located by leading eigenvectors of the normalized modularity matrix

    Get PDF
    Nodal theorems for generalized modularity matrices ensure that the cluster located by the positive entries of the leading eigenvector of various modularity matrices induces a connected subgraph. In this paper we obtain lower bounds for the modularity of that set of nodes showing that, under certain conditions, the nodal domains induced by eigenvectors corresponding to highly positive eigenvalues of the normalized modularity matrix have indeed positive modularity, that is they can be recognized as modules inside the network. Moreover we establish Cheeger-type inequalities for the cut-modularity of the graph, providing a theoretical support to the common understanding that highly positive eigenvalues of modularity matrices are related with the possibility of subdividing a network into communities

    Modularity from Fluctuations in Random Graphs and Complex Networks

    Full text link
    The mechanisms by which modularity emerges in complex networks are not well understood but recent reports have suggested that modularity may arise from evolutionary selection. We show that finding the modularity of a network is analogous to finding the ground-state energy of a spin system. Moreover, we demonstrate that, due to fluctuations, stochastic network models give rise to modular networks. Specifically, we show both numerically and analytically that random graphs and scale-free networks have modularity. We argue that this fact must be taken into consideration to define statistically-significant modularity in complex networks.Comment: 4 page

    Ground state energy of qq-state Potts model: the minimum modularity

    Full text link
    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the \emph{modularity}. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Phys. Rev. E \textbf{76}, 015102 (2007)]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q(2)q(\geq 2) communities. Here, we calculate the modularity for qq communities by evaluating the ground state energy of the qq-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to k/k\langle \sqrt{k} \rangle / \langle k \rangle regardless of qq and that only the coefficient depends on qq. In particular, when the degree distribution follows a power law, the modularity is proportional to k1/2\langle k \rangle^{-1/2}. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.Comment: 14 pages, 4 figure

    Detecting Communities in Networks by Merging Cliques

    Full text link
    Many algorithms have been proposed for detecting disjoint communities (relatively densely connected subgraphs) in networks. One popular technique is to optimize modularity, a measure of the quality of a partition in terms of the number of intracommunity and intercommunity edges. Greedy approximate algorithms for maximizing modularity can be very fast and effective. We propose a new algorithm that starts by detecting disjoint cliques and then merges these to optimize modularity. We show that this performs better than other similar algorithms in terms of both modularity and execution speed.Comment: 5 pages, 7 figure
    corecore