89 research outputs found

    A Vision-based Scheme for Kinematic Model Construction of Re-configurable Modular Robots

    Full text link
    Re-configurable modular robotic (RMR) systems are advantageous for their reconfigurability and versatility. A new modular robot can be built for a specific task by using modules as building blocks. However, constructing a kinematic model for a newly conceived robot requires significant work. Due to the finite size of module-types, models of all module-types can be built individually and stored in a database beforehand. With this priori knowledge, the model construction process can be automated by detecting the modules and their corresponding interconnections. Previous literature proposed theoretical frameworks for constructing kinematic models of modular robots, assuming that such information was known a priori. While well-devised mechanisms and built-in sensors can be employed to detect these parameters automatically, they significantly complicate the module design and thus are expensive. In this paper, we propose a vision-based method to identify kinematic chains and automatically construct robot models for modular robots. Each module is affixed with augmented reality (AR) tags that are encoded with unique IDs. An image of a modular robot is taken and the detected modules are recognized by querying a database that maintains all module information. The poses of detected modules are used to compute: (i) the connection between modules and (ii) joint angles of joint-modules. Finally, the robot serial-link chain is identified and the kinematic model constructed and visualized. Our experimental results validate the effectiveness of our approach. While implementation with only our RMR is shown, our method can be applied to other RMRs where self-identification is not possible

    Разработка устройства сопряжения для модульной сельскохозяйственной робототехнической платформы

    Get PDF
    To create multifunctional robotic platforms for agricultural use, it is reasonable to use a modular principle that will allow installing various equipment depending on the tasks assigned to the robotic tool. Providing autonomous reconfiguration capabilities will reduce human interference and maintenance costs. (Research purpose) This work is aimed at developing a scalable device for interfacing functional modules with the agricultural robotic base platform, which can provide mechanical fixation, energy transfer and information exchange. (Materials and methods) This article analyzes the previous research into the solutions for interfacing modules in robotic complexes and points out their benefits and drawbacks. Based on the analysis and own research, the interface mechanism structure was developed to ensure the correct mutual position and fixation of the module to the base platform under the assumption of possible energy and information exchange. (Results and discussion) In the course of the work, the design ratios for the interface device were derived, making it possible to calculate the permissible linear displacements and permissible angular deviation of the mechanism interfacing elements. Based on the permissible linear deviations up to 10-13 millimeters and a permissible angular deviation of 20 degrees, the main dimensions of the device prototype were obtained. A prototype interface device was operationalized with the dimensional specifications of 200 millimeters in length, 130 millimeters in width, 58 millimeters in height. Several experiments with the device prototype were carried out based on various linear and angular deviations of the interfacing elements. (Conclusions) It was found out that successful interfacing occurs in 98 percent of cases subject to admissible calculated displacements. It was concluded that the proposed interface device will allow for the autonomous replacement of modules of multifunctional robotic platforms.Показали, что для создания многофункциональных робототехнических платформ сельскохозяйственного применения актуально использовать модульный принцип, который позволит устанавливать различное навесное оборудование в зависимости от задач, поставленных перед робототехническим средством. Отметили, что автономная реконфигурация снизит вмешательство человека в эксплуатацию и затраты на обслуживание. (Цель исследования) Разработать масштабируемое устройство сопряжения функциональных модулей с базовой сельскохозяйственной робототехнической платформой, которое сможет обеспечить механическую фиксацию, передачу энергии и информационный обмен. (Материалы и методы) Провели анализ исследовательских работ в направлении решений для сопряжения модулей в робототехнических комплексах, отметили их достоинства и недостатки. Создали структуру механизма сопряжения для обеспечения корректного взаимного положения и фиксации модуля с базовой платформой при возможности энергетического и информационного обмена. (Результаты и обсуждение) Вывели расчетные соотношения для устройства сопряжения, позволяющие вычислять допустимые линейные смещения и допустимое угловое отклонение сопрягаемых элементов механизма. Определили основные размеры прототипа устройства по заданным допустимым линейными отклонениями в диапазоне до 10-13 миллиметров и с допустимым угловым отклонением 20 градусов. Реализовали прототип устройства сопряжения с габаритными размерами: длина – 200 миллиметров, ширина – 130, высота – 58 миллиметров. Провели с ним эксперименты, изменяя линейные и угловые отклонения сопрягаемых элементов. (Выводы) Определили, что успешное сопряжение происходит в 98 процентах случаев при соблюдении допустимых расчетных смещений. Заключили, что предложенное устройство сопряжения позволит реализовать автономную замену модулей многофункциональных робототехнических платформ

    Robot kinematic structure classification from time series of visual data

    Full text link
    In this paper we present a novel algorithm to solve the robot kinematic structure identification problem. Given a time series of data, typically obtained processing a set of visual observations, the proposed approach identifies the ordered sequence of links associated to the kinematic chain, the joint type interconnecting each couple of consecutive links, and the input signal influencing the relative motion. Compared to the state of the art, the proposed algorithm has reduced computational costs, and is able to identify also the joints' type sequence

    A study of influential factors in designing self-reconfigurable robots for green manufacturing

    Get PDF
    © 2018 ACIS2018.org. All rights reserved. There is incremental growth in adopting self-reconfigurable robots in automating manufacturing conventional product lines. Using this class of robots adapting themselves with ever-changing environmental conditions has been acclaimed as a promising way of reducing energy consumption and environmental impact and thus enabling green manufacturing. Whilst the majority of existing research focuses on highlighting the efficacy of self-reconfigurable robots in energy reduction with technical driven solutions, the research on exploring the salient factors in design and development self-reconfigurable robots that directly enable or hinder green manufacturing is non-extant. This interdisciplinary research contributes to the nascent body of the knowledge by empirical investigation of design-time, run-time, and hardware aspects which should be contingently balanced when developing green-aware self-reconfigurable robots
    corecore