1,837 research outputs found

    Modelling of Modular Robot Configurations Using Graph Theory

    Get PDF
    Modular robots are systems that can change its geometry or configuration when connecting more modules or when rearranging them in a different manner to perform a variety of tasks. Graph theory can be used to describe modular robots configurations, hence the possibility to determine the flexibility of the robot to move from one point to another. When the robot’s configurations are represented in a mathematical way, forward kinematics can be obtained

    Bio-inspired Tensegrity Soft Modular Robots

    Get PDF
    In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity mod-ules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.Comment: 12 pages, 7 figures, submitted to Living Machine conference 201

    Offline GA-based optimisation for heterogeneous modular multi-configurable chained micro-robots

    Get PDF
    This paper presents a GA-based optimization procedure for bioinspired heterogeneous modular multiconfigurable chained microrobots. When constructing heterogeneous chained modular robots that are composed of several different drive modules, one must select the type and position of the modules that form the chain. One must also develop new locomotion gaits that combine the different drive modules. These are two new features of heterogeneous modular robots that they do not share with homogeneous modular robots. This paper presents an offline control system that allows the development of new configuration schemes and locomotion gaits for these heterogeneous modular multiconfigurable chained microrobots. The offline control system is based on a simulator that is specifically designed for chained modular robots and allows them to develop and learn new locomotion patterns.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid

    Evolutionary Modular Robotics: Survey and Analysis

    Get PDF
    This paper surveys various applications of artificial evolution in the field of modular robots. Evolutionary robotics aims to design autonomous adaptive robots automatically that can evolve to accomplish a specific task while adapting to environmental changes. A number of studies have demonstrated the feasibility of evolutionary algorithms for generating robotic control and morphology. However, a huge challenge faced was how to manufacture these robots. Therefore, modular robots were employed to simplify robotic evolution and their implementation in real hardware. Consequently, more research work has emerged on using evolutionary computation to design modular robots rather than using traditional hand design approaches in order to avoid cognition bias. These techniques have the potential of developing adaptive robots that can achieve tasks not fully understood by human designers. Furthermore, evolutionary algorithms were studied to generate global modular robotic behaviors including; self-assembly, self-reconfiguration, self-repair, and self-reproduction. These characteristics allow modular robots to explore unstructured and hazardous environments. In order to accomplish the aforementioned evolutionary modular robotic promises, this paper reviews current research on evolutionary robotics and modular robots. The motivation behind this work is to identify the most promising methods that can lead to developing autonomous adaptive robotic systems that require the minimum task related knowledge on the designer side.https://doi.org/10.1007/s10846-018-0902-

    A new meta-module for efficient reconfiguration of hinged-units modular robots

    Get PDF
    We present a robust and compact meta-module for edge-hinged modular robot units such as M-TRAN, SuperBot, SMORES, UBot, PolyBot and CKBot, as well as for central-point-hinged ones such as Molecubes and Roombots. Thanks to the rotational degrees of freedom of these units, the novel meta-module is able to expand and contract, as to double/halve its length in each dimension. Moreover, for a large class of edge-hinged robots the proposed meta-module also performs the scrunch/relax and transfer operations required by any tunneling-based reconfiguration strategy, such as those designed for Crystalline and Telecube robots. These results make it possible to apply efficient geometric reconfiguration algorithms to this type of robots. We prove the size of this new meta-module to be optimal. Its robustness and performance substantially improve over previous results.Peer ReviewedPostprint (author's final draft
    • …
    corecore