11,819 research outputs found

    Signal Recovery in Perturbed Fourier Compressed Sensing

    Full text link
    In many applications in compressed sensing, the measurement matrix is a Fourier matrix, i.e., it measures the Fourier transform of the underlying signal at some specified `base' frequencies {ui}i=1M\{u_i\}_{i=1}^M, where MM is the number of measurements. However due to system calibration errors, the system may measure the Fourier transform at frequencies {ui+δi}i=1M\{u_i + \delta_i\}_{i=1}^M that are different from the base frequencies and where {δi}i=1M\{\delta_i\}_{i=1}^M are unknown. Ignoring perturbations of this nature can lead to major errors in signal recovery. In this paper, we present a simple but effective alternating minimization algorithm to recover the perturbations in the frequencies \emph{in situ} with the signal, which we assume is sparse or compressible in some known basis. In many cases, the perturbations {δi}i=1M\{\delta_i\}_{i=1}^M can be expressed in terms of a small number of unique parameters PMP \ll M. We demonstrate that in such cases, the method leads to excellent quality results that are several times better than baseline algorithms (which are based on existing off-grid methods in the recent literature on direction of arrival (DOA) estimation, modified to suit the computational problem in this paper). Our results are also robust to noise in the measurement values. We also provide theoretical results for (1) the convergence of our algorithm, and (2) the uniqueness of its solution under some restrictions.Comment: New theortical results about uniqueness and convergence now included. More challenging experiments now include

    Closed orbit correction at synchrotrons for symmetric and near-symmetric lattices

    Full text link
    This contribution compiles the benefits of lattice symmetry in the context of closed orbit correction. A symmetric arrangement of BPMs and correctors results in structured orbit response matrices of Circulant or block Circulant type. These forms of matrices provide favorable properties in terms of computational complexity, information compression and interpretation of mathematical vector spaces of BPMs and correctors. For broken symmetries, a nearest-Circulant approximation is introduced and the practical advantages of symmetry exploitation are demonstrated with the help of simulations and experiments in the context of FAIR synchrotrons

    Development and implementation of an adaptive digital beamforming network for satellite communication systems

    Get PDF
    The use of adaptive digital beamforming techniques has, until recently, been largely restricted to high performance military radar systems. Recent advances in digital technology, however, have enabled the design of single chip digital beamforming networks. This, coupled with advances in digital signal processor technology, enables complete beamforming systems to be constructed at a lower cost, thus making the application of these techniques to commercial communications systems attractive. The design and development of such an adaptative digital beamforming network are described. The system is being developed as a proof of concept laboratory based demonstrator to enable the feasibility of adaptive digital beamforming techniques for communication systems to be determined. Ultimately, digital beamforming could be used in conjunction with large array antennas for communication satellite systems. This will enable the simultaneous steering of high gain antenna beams in the direction of gr...Peer ReviewedPostprint (published version

    Four-dimensional light shaping: manipulating ultrafast spatio-temporal foci in space and time

    Full text link
    Spectral dispersion of ultrashort pulses allows simultaneous focusing of light in both space and time creating so-called spatio-temporal foci. Such space-time coupling may be combined with existing holographic techniques to give a further dimension of control when generating focal light fields. It is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three dimensional arrays of spatio-temporally focused spots. Exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighbouring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and non-linear laser fabrication of glass

    Focal-plane wavefront sensing with high-order adaptive optics systems

    Full text link
    We investigate methods to calibrate the non-common path aberrations at an adaptive optics system having a wavefront-correcting device working at an extremely high resolution (larger than 150x150). We use focal-plane images collected successively, the corresponding phase-diversity information and numerically efficient algorithms to calculate the required wavefront updates. The wavefront correction is applied iteratively until the algorithms converge. Different approaches are studied. In addition of the standard Gerchberg-Saxton algorithm, we test the extension of the Fast & Furious algorithm that uses three images and creates an estimate of the pupil amplitudes. We also test recently proposed phase-retrieval methods based on convex optimisation. The results indicate that in the framework we consider, the calibration task is easiest with algorithms similar to the Fast & Furious.Comment: 11 pages, 7 figures, published in SPIE proceeding
    corecore