35 research outputs found

    Интерактивная обучающая система на основе электронной карты

    Get PDF

    Standardized Web Processing of Hydro-Engineering Operations

    Get PDF
    Mini-Symposium: Data Management in Hydro-Engineerin

    A geoprocessing modelling interoperable framework for AgriGIS using open data and open standards

    Get PDF
    ABSTRACT We retrace the construction of AgriGIS framework between multiple disciplines around a common objective of facilitating research on model simulations for sustainable food security. The geospatial media enabling multidisciplinary research in crop modelling but also supporting new types of hypothesis and analysis, is described with interoperability principles and seamless access and sharing for data, metadata and processing models. Designing the platform achieving this main objective generated a transdisciplinary vision of modelling and forecasting for sustainable agriculture

    From paper maps to the Digital Earth and the Internet of Places

    Get PDF
    Maps have always been tools that have fascinated men, for their ability to make us see the world that surrounds us. They were and are the outcome of models and methods applied to the observation of the world, starting from geodesy, surveying photogrammetry and remote sensing. All these disciplines, which we now group under the new name of geomatics, have had a tremendous boost in recent years. However, the synergy with information computer technology is probably the aspect that is revolutionizing more cartography. Earlier computers and after the Internet have brought us to new concepts and tools that will have profound effects not only in the world of niche of cartographers, but also more generally in the life of all human beings. The Digital Earth, proposed in 1998 by Al Gore, has been enriched in just twenty years of a set of new demands, which make even more interesting and challenging being cartographers today. The paper, without claiming to be comprehensive, aims at providing a concise overview of the state of art and of the advancement in this area. Moreover, it urges the community of geomatics to be protagonist and promoter of a new cartography, largely to be reinvented, and that would put us at the center of processes of knowledge and management of the Earth. The map makers in the past helped discovering new worlds, now the challenge is to rediscover our common world with new eyes of environmental, social, economic equity, sustainability and participation

    DEVELOPING A SPATIAL PROCESSING SERVICE FOR AUTOMATIC CALCULATION OF STORM INUNDATION

    Get PDF

    Online watershed boundary delineation: sharing models through Spatial Data Infrastructures

    Get PDF

    AN OPEN SOURCE WEB-GIS BASED PRECISE SATELLITE TRACKING AND VISUALISATION TOOL USING TWO LINE ELEMENT DATA

    Get PDF
    Accurate monitoring of satellites plays a pivotal role in analysing critical mission specific parameters for estimating orbital position uncertainties. An appropriate database management system (DBMS) at the software end, could prove its potential as a convenient solution over the existing file based two line element (TLE) data structure. The current web-based satellite tracking systems, such as n2yo, satview, and satflare, are unable to provide location-based satellite monitoring. Moreover, the users need to zoom into the displayed world map for obtaining information of the satellites that are currently over the respective area. Also, satellite searching is a cumbersome task in these web-based systems. In this research work, a systematic approach has been utilised to develop a generic open-source Web-GIS based tool for addressing the aforementioned issues. This tool incorporates a PostgreSQL database for storing the parsed TLE data which are freely available on the CelesTrak (NORAD) repository. Our choice of selecting PostgreSQL as a backend DB is primarily due to its open source and scalable properties compared to other resource intensive databases. Using suitable python libraries (e.g. Skyfield and Orbit-Predictor), the position and velocity at any point of time can be accurately estimated. For this purpose, the tool has been tested on several cities for displaying location-based satellite tracking that includes different types of space-objects

    DEVELOPING AN INTEGRATED MODEL FOR THE CORN, ETHANOL, AND BEEF SYSTEMS USING A LOOSELY COUPLED WEB FRAMEWORK

    Get PDF
    With the global population approaching 9 billion people by the year 2050, the world’s food, energy, and water (FEW) resources must be used more intelligently to provide for everyone. While we understand how individual FEW systems behave using modeling, we cannot understand the full environmental and production impacts of decisions in each system without understanding how they are all linked together. An approach to coupling these systems is starting with identifying a few highly interconnected FEW systems. The corn, ethanol, and beef systems are large economic and agricultural drivers in the Midwest United States and are highly linked. Many individual models exist for each system and are wrapped in software to be used for decision support. This thesis explores the integration of the corn, ethanol, and beef systems by connecting existing models using a loosely coupled web framework. Each model is wrapped in Python code and linked, also in Python, using connections that reflect the real world system. Environmental impact of the full integrated system is done using life cycle assessment that accounts for inputs and outputs for each model. Simulations done with the models predict the resource production of the integrated system given user inputs and the full environmental impacts in water use, energy use, and greenhouse gas emissions. The objectives of this thesis are: (1) to review literature of FEW nexus integration by coupling models, (2) integrating the crop and biofuel systems with service-oriented architecture, and (3) integrating the corn, ethanol, and beef systems with service-oriented architecture. Scenario analyses are done to test the models’ responses to different management, climate, and resource demand scenarios. Advisors: Jeyamkondan Subbiah and Deepak Keshwan

    DEVELOPING AN INTEGRATED MODEL FOR THE CORN, ETHANOL, AND BEEF SYSTEMS USING A LOOSELY COUPLED WEB FRAMEWORK

    Get PDF
    With the global population approaching 9 billion people by the year 2050, the world’s food, energy, and water (FEW) resources must be used more intelligently to provide for everyone. While we understand how individual FEW systems behave using modeling, we cannot understand the full environmental and production impacts of decisions in each system without understanding how they are all linked together. An approach to coupling these systems is starting with identifying a few highly interconnected FEW systems. The corn, ethanol, and beef systems are large economic and agricultural drivers in the Midwest United States and are highly linked. Many individual models exist for each system and are wrapped in software to be used for decision support. This thesis explores the integration of the corn, ethanol, and beef systems by connecting existing models using a loosely coupled web framework. Each model is wrapped in Python code and linked, also in Python, using connections that reflect the real world system. Environmental impact of the full integrated system is done using life cycle assessment that accounts for inputs and outputs for each model. Simulations done with the models predict the resource production of the integrated system given user inputs and the full environmental impacts in water use, energy use, and greenhouse gas emissions. The objectives of this thesis are: (1) to review literature of FEW nexus integration by coupling models, (2) integrating the crop and biofuel systems with service-oriented architecture, and (3) integrating the corn, ethanol, and beef systems with service-oriented architecture. Scenario analyses are done to test the models’ responses to different management, climate, and resource demand scenarios. Advisors: Jeyamkondan Subbiah and Deepak Keshwan
    corecore