599 research outputs found

    Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic

    Get PDF
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Goedel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Goedel logics by Avron. It is shown that the system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively.Comment: v.2: 15 pages. Final version. (v.1: 15 pages. To appear in Computer Science Logic 2000 Proceedings.

    An Instantiation-Based Approach for Solving Quantified Linear Arithmetic

    Full text link
    This paper presents a framework to derive instantiation-based decision procedures for satisfiability of quantified formulas in first-order theories, including its correctness, implementation, and evaluation. Using this framework we derive decision procedures for linear real arithmetic (LRA) and linear integer arithmetic (LIA) formulas with one quantifier alternation. Our procedure can be integrated into the solving architecture used by typical SMT solvers. Experimental results on standardized benchmarks from model checking, static analysis, and synthesis show that our implementation of the procedure in the SMT solver CVC4 outperforms existing tools for quantified linear arithmetic

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place

    A Fine-Grained Hierarchy of Hard Problems in the Separated Fragment

    Get PDF
    Recently, the separated fragment (SF) has been introduced and proved to be decidable. Its defining principle is that universally and existentially quantified variables may not occur together in atoms. The known upper bound on the time required to decide SF's satisfiability problem is formulated in terms of quantifier alternations: Given an SF sentence ∃z⃗∀x⃗1∃y⃗1…∀x⃗n∃y⃗n.ψ\exists \vec{z} \forall \vec{x}_1 \exists \vec{y}_1 \ldots \forall \vec{x}_n \exists \vec{y}_n . \psi in which ψ\psi is quantifier free, satisfiability can be decided in nondeterministic nn-fold exponential time. In the present paper, we conduct a more fine-grained analysis of the complexity of SF-satisfiability. We derive an upper and a lower bound in terms of the degree of interaction of existential variables (short: degree)}---a novel measure of how many separate existential quantifier blocks in a sentence are connected via joint occurrences of variables in atoms. Our main result is the kk-NEXPTIME-completeness of the satisfiability problem for the set SF≤kSF_{\leq k} of all SF sentences that have degree kk or smaller. Consequently, we show that SF-satisfiability is non-elementary in general, since SF is defined without restrictions on the degree. Beyond trivial lower bounds, nothing has been known about the hardness of SF-satisfiability so far.Comment: Full version of the LICS 2017 extended abstract having the same title, 38 page

    Quantified Propositional Gödel Logics

    Get PDF
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics

    The Connectivity of Boolean Satisfiability: No-Constants and Quantified Variants

    Full text link
    For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. Motivated by research on heuristics and the satisfiability threshold, Gopalan et al. in 2006 studied connectivity properties of the solution graph and related complexity issues for constraint satisfaction problems in Schaefer's framework. They found dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question that we recently were able to prove. While Gopalan et al. considered CNF(S)-formulas with constants, we here look at two important variants: CNF(S)-formulas without constants, and partially quantified formulas. For the diameter and the st-connectivity question, we prove dichotomies analogous to those of Gopalan et al. in these settings. While we cannot give a complete classification for the connectivity problem yet, we identify fragments where it is in P, where it is coNP-complete, and where it is PSPACE-complete, in analogy to Gopalan et al.'s trichotomy.Comment: superseded by chapter 3 of arXiv:1510.0670
    • …
    corecore