203,866 research outputs found

    Models and algorithms for social influence analysis

    Full text link

    How to measure influence in social networks?

    Get PDF
    Today, social networks are a valued resource of social data that can be used to understand the interactions among people and communities. People can influence or be influenced by interactions, shared opinions and emotions. How-ever, in the social network analysis, one of the main problems is to find the most influential people. This work aims to report on the results of literature review whose goal was to identify and analyse the metrics, algorithms and models used to measure the user influence on social networks. The search was carried out in three databases: Scopus, IEEEXplore, and ScienceDirect. We restricted pub-lished articles between the years 2014 until 2020, in English, and we used the following keywords: social networks analysis, influence, metrics, measurements, and algorithms. Backward process was applied to complement the search consid-ering inclusion and exclusion criteria. As a result of this process, we obtained 25 articles: 12 in the initial search and 13 in the backward process. The literature review resulted in the collection of 21 influence metrics, 4 influence algorithms, and 8 models of influence analysis. We start by defining influence and presenting its properties and applications. We then proceed by describing, analysing and categorizing all that were found metrics, algorithms, and models to measure in-fluence in social networks. Finally, we present a discussion on these metrics, al-gorithms, and models. This work helps researchers to quickly gain a broad per-spective on metrics, algorithms, and models for influence in social networks and their relative potentialities and limitations.This work has been supported by IViSSEM: POCI-01-0145-FEDER-28284, COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Understanding the Roots of Radicalisation on Twitter

    Get PDF
    In an increasingly digital world, identifying signs of online extremism sits at the top of the priority list for counter-extremist agencies. Researchers and governments are investing in the creation of advanced information technologies to identify and counter extremism through intelligent large-scale analysis of online data. However, to the best of our knowledge, these technologies are neither based on, nor do they take advantage of, the existing theories and studies of radicalisation. In this paper we propose a computational approach for detecting and predicting the radicalisation influence a user is exposed to, grounded on the notion of ’roots of radicalisation’ from social science models. This approach has been applied to analyse and compare the radicalisation level of 112 pro-ISIS vs.112 “general" Twitter users. Our results show the effectiveness of our proposed algorithms in detecting and predicting radicalisation influence, obtaining up to 0.9 F-1 measure for detection and between 0.7 and 0.8 precision for prediction. While this is an initial attempt towards the effective combination of social and computational perspectives, more work is needed to bridge these disciplines, and to build on their strengths to target the problem of online radicalisation

    The dynamics of information-driven coordination phenomena: a transfer entropy analysis

    Get PDF
    Data from social media are providing unprecedented opportunities to investigate the processes that rule the dynamics of collective social phenomena. Here, we consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of micro-blogging time series to extract directed networks of influence among geolocalized sub-units in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time-scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social sub-units. In the absence of a clear exogenous driving, social collective phenomena can be represented as endogenously-driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data

    Measuring the influence of users on social networks: SocialEngagement proposal

    Get PDF
    The analysis of data from social media and the measurement of the influence of its users are topics of increasing importance from different points of view, including the academic and the economic. In this paper we propose a reflection towards the creation of comprehensive algorithms for the measurement of influence through the analysis of data generated in the interactions of social media users, as well as the detection of new business models on the Net. To do so, the paper reflects on the concept of influence in social media and the role of information and communication professionals in its measurement and analysis, describes several instruments used to measure influence, and presents the project SocialEngagement, a web platform for the analysis and detection of referents, opinion makers and trends

    Medición de la influencia de usuarios en redes sociales: propuesta SocialEngagement

    Get PDF
    The analysis of data from social media and the measurement of the influence of its users are topics of increasing importance from different points of view, including the academic and the economic. In this paper we propose a reflection towards the creation of comprehensive algorithms for the measurement of influence through the analysis of data generated in the interactions of social media users, as well as the detection of new business models on the Net. To do so, the paper reflects on the concept of influence in social media and the role of information and communication professionals in its measurement and analysis, describes several instruments used to measure influence, and presents the project SocialEngagement, a web platform for the analysis and detection of referents, opinion makers and trends

    A comparative study of russian trolls using several machine learning models on twitter data

    Get PDF
    Ever since Russian trolls have been brought into light, their interference in the 2016 US Presidential elections has been monitored and studied thoroughly. These Russian trolls have fake accounts registered on several major social media sites to influence public opinions. Our work involves trying to discover patterns in these tweets and classifying them by using different machine learning approaches such as Support Vector Machines, Word2vec and neural network models, and then creating a benchmark to compare all the different models. Two machine learning models are developed for this purpose. The first one is used to classify any given specific tweet as either troll or non-troll tweet. The second model classifies specific tweets as coming from left trolls or right trolls, based on apparent extreme political orientation. Several kinds of statistical analysis on these tweets are performed based on the tweets and their classifications. Further, an analysis of the machine learning algorithms, using several performance criteria, is presented

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201

    Influence Analysis towards Big Social Data

    Get PDF
    Large scale social data from online social networks, instant messaging applications, and wearable devices have seen an exponential growth in a number of users and activities recently. The rapid proliferation of social data provides rich information and infinite possibilities for us to understand and analyze the complex inherent mechanism which governs the evolution of the new technology age. Influence, as a natural product of information diffusion (or propagation), which represents the change in an individual’s thoughts, attitudes, and behaviors resulting from interaction with others, is one of the fundamental processes in social worlds. Therefore, influence analysis occupies a very prominent place in social related data analysis, theory, model, and algorithms. In this dissertation, we study the influence analysis under the scenario of big social data. Firstly, we investigate the uncertainty of influence relationship among the social network. A novel sampling scheme is proposed which enables the development of an efficient algorithm to measure uncertainty. Considering the practicality of neighborhood relationship in real social data, a framework is introduced to transform the uncertain networks into deterministic weight networks where the weight on edges can be measured as Jaccard-like index. Secondly, focusing on the dynamic of social data, a practical framework is proposed by only probing partial communities to explore the real changes of a social network data. Our probing framework minimizes the possible difference between the observed topology and the actual network through several representative communities. We also propose an algorithm that takes full advantage of our divide-and-conquer strategy which reduces the computational overhead. Thirdly, if let the number of users who are influenced be the depth of propagation and the area covered by influenced users be the breadth, most of the research results are only focused on the influence depth instead of the influence breadth. Timeliness, acceptance ratio, and breadth are three important factors that significantly affect the result of influence maximization in reality, but they are neglected by researchers in most of time. To fill the gap, a novel algorithm that incorporates time delay for timeliness, opportunistic selection for acceptance ratio, and broad diffusion for influence breadth has been investigated. In our model, the breadth of influence is measured by the number of covered communities, and the tradeoff between depth and breadth of influence could be balanced by a specific parameter. Furthermore, the problem of privacy preserved influence maximization in both physical location network and online social network was addressed. We merge both the sensed location information collected from cyber-physical world and relationship information gathered from online social network into a unified framework with a comprehensive model. Then we propose the resolution for influence maximization problem with an efficient algorithm. At the same time, a privacy-preserving mechanism are proposed to protect the cyber physical location and link information from the application aspect. Last but not least, to address the challenge of large-scale data, we take the lead in designing an efficient influence maximization framework based on two new models which incorporate the dynamism of networks with consideration of time constraint during the influence spreading process in practice. All proposed problems and models of influence analysis have been empirically studied and verified by different, large-scale, real-world social data in this dissertation
    • …
    corecore