336 research outputs found

    Modelling uncertainty in deep learning for camera relocalization

    Get PDF
    We present a robust and real-time monocular six degree of freedom visual relocalization system. We use a Bayesian convolutional neural network to regress the 6-DOF camera pose from a single RGB image. It is trained in an end-to-end manner with no need of additional engineering or graph optimisation. The algorithm can operate indoors and outdoors in real time, taking under 6ms to compute. It obtains approximately 2m and 6 degrees accuracy for very large scale outdoor scenes and 0.5m and 10 degrees accuracy indoors. Using a Bayesian convolutional neural network implementation we obtain an estimate of the model's relocalization uncertainty and improve state of the art localization accuracy on a large scale outdoor dataset. We leverage the uncertainty measure to estimate metric relocalization error and to detect the presence or absence of the scene in the input image. We show that the model's uncertainty is caused by images being dissimilar to the training dataset in either pose or appearance

    A hybrid probabilistic model for camera relocalization

    Get PDF
    We present a hybrid deep learning method for modelling the uncertainty of camera relocalization from a single RGB image. The proposed system leverages the discriminative deep image representation from a convolutional neural networks, and uses Gaussian Process regressors to generate the probability distribution of the six degree of freedom (6DoF) camera pose in an end-to-end fashion. This results in a network that can generate uncertainties over its inferences with no need to sample many times. Furthermore we show that our objective based on KL divergence reduces the dependence on the choice of hyperparameters. The results show that compared to the state-of-the-art Bayesian camera relocalization method, our model produces comparable localization uncertainty and improves the system efficiency significantly, without loss of accuracy.Ming Cai, Chunhua Shen, Ian Rei

    Real-Time 6DOF Pose Relocalization for Event Cameras with Stacked Spatial LSTM Networks

    Full text link
    We present a new method to relocalize the 6DOF pose of an event camera solely based on the event stream. Our method first creates the event image from a list of events that occurs in a very short time interval, then a Stacked Spatial LSTM Network (SP-LSTM) is used to learn the camera pose. Our SP-LSTM is composed of a CNN to learn deep features from the event images and a stack of LSTM to learn spatial dependencies in the image feature space. We show that the spatial dependency plays an important role in the relocalization task and the SP-LSTM can effectively learn this information. The experimental results on a publicly available dataset show that our approach generalizes well and outperforms recent methods by a substantial margin. Overall, our proposed method reduces by approx. 6 times the position error and 3 times the orientation error compared to the current state of the art. The source code and trained models will be released.Comment: 7 pages, 5 figure

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization

    Full text link
    Camera relocalization plays a vital role in many robotics and computer vision tasks, such as global localization, recovery from tracking failure and loop closure detection. Recent random forests based methods exploit randomly sampled pixel comparison features to predict 3D world locations for 2D image locations to guide the camera pose optimization. However, these image features are only sampled randomly in the images, without considering the spatial structures or geometric information, leading to large errors or failure cases with the existence of poorly textured areas or in motion blur. Line segment features are more robust in these environments. In this work, we propose to jointly exploit points and lines within the framework of uncertainty driven regression forests. The proposed approach is thoroughly evaluated on three publicly available datasets against several strong state-of-the-art baselines in terms of several different error metrics. Experimental results prove the efficacy of our method, showing superior or on-par state-of-the-art performance.Comment: published as a conference paper at 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
    • …
    corecore