4 research outputs found

    Modelling pesticide uptake by potatoes through an ordinary differential equation coupled with a dispersion-advection equation.

    Get PDF
    The objective of this work is to present a model that simulates pesticide uptake by potatoes using a system with two differential equations, where one equation describes pesticide uptake by potatoes and the other one describes the pesticide lixiviation in soil. It was assumed that uptake and lixiviation occur, respectively, by diffusion of the pesticide through potato tissues and by diffusion and advection of the pesticide in soil profile. Uptake was described by an ordinary differential equation (ODE) that was coupled to a dispersionadvection equation (DAE). These equations describe the kinetics of the pesticide in potatoes and in soil profile, respectively. The coupled equations (ODE-DAE) were numerically solved through a finite difference method, programmed in Matlab® system, and used to simulate uptake of pesticides by potatoes

    Modelling the pesticide concentration in a rice field by a level IV fugacity model coupled with a dispersion-advection equation

    Get PDF
    AbstractThe numerical simulation of a level IV fugacity model coupled to a dispersion-advection equation to simulate the environmental concentration of a pesticide in rice fields is presented. The model simulates the dynamic distribution of the pesticide in a compartmental system constituted by air, water, rice plants and bottom sediment together with saturated soil layers. The level IV fugacity model is given by a linear system of ordinary differential equations that considers the fugacities and, consequently, the concentrations of the pesticide in air, water, rice plants and bottom sediment. The dispersion-advection equation simulates the pesticide leaching in the saturated layers of the soil, considering the hydrodynamic dispersion, the pesticide degradation rate and the soil pesticide absorption in the saturated soil layer

    Modelling the pesticide concentration in a rice field by a level IV fugacity model coupled with a dispersion-advection equation.

    Get PDF
    The numerical simulation of a level IV fugacity model coupled to a dispersion-advection equation to simulate the environmental concentration of a pesticide in rice fields is presented. The model simulates the dynamic distribution of the pesticide in a compartmental system constituted by air, water, rice plants and bottom sediment together with saturated soil layers. The level IV fugacity model is given by a linear system of ordinary differential equations that considers the fugacities and, consequently, the concentrations of the pesticide in air, water, rice plants and bottom sediment. The dispersion-advection equation simulates the pesticide leaching in the saturated layers of the soil, considering the hydrodynamic dispersion, the pesticide degradation rate and the soil pesticide absorption in the saturated soil layer

    Modélisation de la dispersion aérienne de pesticides des échelles locales aux échelles régionales, influence des aménagements et quantification des niveaux d'exposition

    Get PDF
    L'objectif de cette thèse est l'étude de la dispersion de pesticides à partir de parcelles de vigneet l'influence de l'aménagement de parcelles sur la dispersion. Pour atteindre cet objectif, nous avons utilisé la méthode de simulation des grandes échelles (LES) et l'approche lagrangienne combinées avec des expérimentations. Pour l'étude de la dynamique du vent dans les couverts en rangs, une expérimentation a été conduite sur une parcelle de vigne. Le modèle Atmosphérique ARPS a été utilisé pour la modélisation de l'écoulement atmosphérique dans les couverts en rangs. Pour la validation du modèle, les différentes statistiques mesurées ont été comparées à celles simulées. L'accord entre les mesures et les prédictions du modèle était encourageant. L'expérimentation et la modélisation ont montré que l'écoulement dans les couverts en rangs se comporte différemment selon la direction du vent en termes d'organisation et de paramètres aérodynamiques. De plus, les structures cohérentes turbulentes dans les couverts en rangs sont quasi-indépendantes de la direction du vent et partagent les mêmes propriétés que dans les couverts homogènes horizontalement. Pour l'étude de la dispersion de pesticide à partir de la vigne, une expérimentation sur vigne artificielle a été menée. En parallèle, un modèle numérique de dispersion, qui repose sur le modèle de vigne validé, a été développé. Il est ressortit de la modélisation et de l'expérimentation que, à temps court, la dispersion de pesticides à l'échelle de quelques rangs de vigne est dominée par les jets d'air du sprayer. Les comparaisons qualitative et quantitative de la progression du nuage émis par le sprayer, des pertes verticales et des dépôts obtenus par simulation et expérimentation étaient assez satisfaisantes. Les résultats de l'expérimentation sur la dispersion sur vigne artificielle ont été combinés avec la modélisation numérique pour l'étude de la dispersion à l'échelle de la parcelle et l'analyse de l'influence des aménagements de parcelles sur la dispersion. L'analyse comparative des scénarios a montré que le maximum d'exposition des individus vivant à proximité de parcelle viticoles est observé quand les rangs de vigne sont parallèles à la direction moyenne du vent et que les haies d'arbre constituent une alternative pour réduire les niveaux d'exposition.The aim of this work is to study pesticide dispersal from vineyards and the effect of the layingout of the vineyards on pesticide dispersal. For this purpose, we have used the Large Eddy Simulation (LES) method and the lagrangian approach combined with the experiments. To examine the wind dynamic in row vegetable canopy, an experiment was achieved on a natural vineyard. The atmospheric model ARPS was used to model the atmospheric wind flow above and within row vegetable canopy. For validating the model, the measured wind flow statistics were compared to the simulated ones. The agreement between the measurement and the prediction of the model was encouraging. In addition, experiment and modeling have shown that the wind flow in the row vegetable canopy behave following the wind direction in term of the flow organization and aerodynamic parameters. Moreover, the turbulent coherent structures in row vegetable canopy are independent on the wind direction and share the same properties as in the horizontally homogeneous canopy. To study the pesticide dispersal from vineyard, an experiment on artificial vineyard was accomplished. In parallel, a numerical model lying on the validated row vegetable canopy model was developed. From both experiment and modeling, it appears that the short term pesticide dispersal at the scale of the few vine rows is dominated by the air jet sprayer. The qualitative and quantitative comparisons of the measured and simulated cloud spreading, upward loss and deposit were promising. The experimental results on pesticide dispersal from the artificial vineyard were combined with numerical modeling in order to analyze the pesticide dispersal at the scale of the vineyard and the effect of the vineyard laying out on the exposure level of the bystanders. Comparative analysis of the scenarios has shown that the maximum level of exposure is reached when the vine rows are parallel to the dominant wind direction and it can be reduced by using tree-wall.MONTPELLIER-SupAgro La Gaillarde (341722306) / SudocSudocFranceF
    corecore