18,464 research outputs found

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. • common and shared understanding in requirements engineering efforts, • continuous improvement, • outputs of requirement engineering • reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    Enterprise modelling : building a product lifecycle (PLM) model as a component of the integrated vision of the enterprise

    Get PDF
    Enterprise modelling has proved to be an efficient tool to study organisations structure and facilitate decision making. The enterprise is a complex system that is required to use its processes to generate value in a given environment (concurrent, market, suppliers and humanity). We focus on three management disciplines: Product Lifecycle Management (PLM), Supply Chain Management (SCM) and Customer Relationship Management (CRM). These business processes are so intertwined that the enterprise has to concentrate on the three to attain its economic objectives. To enhance the development of PLM, SCM and CRM models, the enterprise needs to capitalise the knowledge necessary to adapt and apply modelling techniques. Knowledge Management (KM) is a key factor to give a unified enterprise vision. Firstly, we propose an integrated enterprise model depicting the interactions between PLM, SCM, CRM and KM models. But a state of the art showed that PLM models are scarce. Most of the PLM models found depends strongly on the particular case studied and can not be used with other enterprises. After defining the most important components of the PLM vision, we propose to organise these components into a formalised way. The study of SCM and CRM models proved to be helpful to structure these components. Finally the validation methodology that is to be established in our coming research works is not only to be used with the PLM model presented in this paper but with SCM and CRM models also.Product Lifecycle Management (PLM), Enterprise modelling, Enterprise systems

    Major Indian ICT firms and their approaches towards achieving quality

    Get PDF
    Of the three basic theories of innovation: the entrepreneur theory, the technology-economics theory and the strategic theory, the third one seems to be highly appropriate for the analysis of recent growth of the information and communication technology (ICT) industry in many developing countries including India. The central measure for achieving quality by the various major Indian ICT firms is widely agreed to have been the adoption of Six Sigma Methodology and various other approaches like Total Quality Management (TQM), Supply Chain Management (SCM), Customer Relationship Management (CRM), etc. It is apparent that the main objective of the firms chosen has been to increase the pace of innovation activities, irrespective of their different areas of product specialisation. Its success also depends largely on the overall improvement in infrastructure, besides active market interaction. To enable both the above, a brief highlight on the establishment of interaction and learning sites (ILSs) in every regional State in India comes to the foreground. The chapter concludes with a mention of the elements observed to be missing among the firms under consideration, and, thereby, delineating the scope for their further improvement.

    Service performance monitoring and control Toolset

    Get PDF
    As service sectors in manufacturing companies become more and more important, Performance Indicators (PIs) will need to be taken into further consideration in order to assess the efficiency and effectiveness of service performances. Hence, PIs are designed to help the organizations and decision makers to better understand how well they are performing in relation to their strategic, tactical and operational goals. While keeping in mind that services are contributing more and more to rise an enterprise turnover, measuring and controlling their performances plays an important role in turning company strategic objectives and goals to reality. It is essential for a company to determine the most significant indicators, how they are related to the formulated company goals and how they depend on performed activities. In this respect, the purpose of this paper is to lay out a method for generating and selecting the PIs related to particular service system requirements. This paper defines an overall PI Toolset which has been developed specifically for Virtual Manufacturing Enterprise (VME) but could also be used for a single enterprise and for a wider set of enterprises in cooperation with additional bodies (e.g. Labs, Industrial associations, universities, etc...). Especially, PI Toolset could be adopted by VMEs in order to improve the management of the service system they want to create through the specification and classification of precised use case objectives. After analyzing the state of the art in literature, a new approach has been developed which provides both a governance methodology and a list of relevant PIs for services. Actually, the proposed PI Toolset may help enterprises in selecting the activity to be monitored, controlled and measured through appropriate PIs. The proposed method essentially consists of a guideline to design, implement and classify effective PIs related to an enterprise’s goals and objectives

    The issue of design in managerial decision making

    Get PDF
    It is argued that the design of decisions is a process that in many ways is shaped by social factors such as identities, values, and influences. To be able to understand how these factors impact organizational decisions, the focus must be set on the management level. It is the management that shoulders the chief responsibility for designing collective actions, such as decisions. Our propositions indicate that the following measures must be taken in order to improve the quality of organizational decisions: 1. The identity of the people, involved in organizational decision making, affects the quality of decisions and should be taken into account in the design of decisions. 2. The decision maker or designer of decisions should engage the members of an organization to create a shared vision. 3. Getting the members of an organization to express and share common values should improve the decision making process. 4. Being able to socially influence the members of an organization, or other stakeholders involved, as well as letting them participate in the process, should improve the quality of decisions

    A review of approaches to supply chain communications: from manufacturing to construction

    Get PDF
    With the increasing importance of computer-based communication technologies, communication networks are becoming crucial in supply chain management. Given the objectives of the supply chain: to have the right products in the right quantities, at the right place, at the right moment and at minimal cost, supply chain management is situated at the intersection of different professional sectors. This is particularly the case in construction, since building needs for its fabrication the incorporation of a number of industrial products. This paper provides a review of the main approaches to supply chain communications as used mainly in manufacturing industries. The paper analyses the extent to which these have been applied to construction. It also reviews the on-going developments and research activities in this domain

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Business Process Innovation using the Process Innovation Laboratory

    Get PDF
    Most organizations today are required not only to establish effective business processes but they are required to accommodate for changing business conditions at an increasing rate. Many business processes extend beyond the boundary of the enterprise into the supply chain and the information infrastructure therefore is critical. Today nearly every business relies on their Enterprise System (ES) for process integration and the future generations of enterprise systems will increasingly be driven by business process models. Consequently process modeling and improvement will become vital for business process innovation (BPI) in future organizations. There is a significant body of knowledge on various aspect of process innovation, e.g. on conceptual modeling, business processes, supply chains and enterprise systems. Still an overall comprehensive and consistent theoretical framework with guidelines for practical applications has not been identified. The aim of this paper is to establish a conceptual framework for business process innovation in the supply chain based on advanced enterprise systems. The main approach to business process innovation in this context is to create a new methodology for exploring process models and patterns of applications. The paper thus presents a new concept for business process innovation called the process innovation laboratory a.k.a. the Ð-Lab. The Ð-Lab is a comprehensive framework for BPI using advanced enterprise systems. The Ð-Lab is a collaborative workspace for experimenting with process models and an explorative approach to study integrated modeling in a controlled environment. The Ð-Lab facilitates innovation by using an integrated action learning approach to process modeling including contemporary technological, organizational and business perspectivesNo; keywords
    • …
    corecore