1,221 research outputs found

    Modelling and solving temporal reasoning as propositional satisfiability

    Get PDF
    AbstractRepresenting and reasoning about time dependent information is a key research issue in many areas of computer science and artificial intelligence. One of the best known and widely used formalisms for representing interval-based qualitative temporal information is Allen's interval algebra (IA). The fundamental reasoning task in IA is to find a scenario that is consistent with the given information. This problem is in general NP-complete.In this paper, we investigate how an interval-based representation, or IA network, can be encoded into a propositional formula of Boolean variables and/or predicates in decidable theories. Our task is to discover whether satisfying such a formula can be more efficient than finding a consistent scenario for the original problem. There are two basic approaches to modelling an IA network: one represents the relations between intervals as variables and the other represents the end-points of each interval as variables. By combining these two approaches with three different Boolean satisfiability (SAT) encoding schemes, we produced six encoding schemes for converting IA to SAT. In addition, we also showed how IA networks can be formulated into satisfiability modulo theories (SMT) formulae based on the quantifier-free integer difference logic (QF-IDL). These encodings were empirically studied using randomly generated IA problems of sizes ranging from 20 to 100 nodes. A general conclusion we draw from these experimental results is that encoding IA into SAT produces better results than existing approaches. More specifically, we show that the new point-based 1-D support SAT encoding of IA produces consistently better results than the other alternatives considered. In comparison with the six different SAT encodings, the SMT encoding came fourth after the point-based and interval-based 1-D support schemes and the point-based direct scheme. Further, we observe that the phase transition region maps directly from the IA encoding to each SAT or SMT encoding, but, surprisingly, the location of the hard region varies according to the encoding scheme. Our results also show a fixed performance ranking order over the various encoding schemes

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    SAT-Solving in Practice, with a Tutorial Example from Supervisory Control

    Get PDF
    Satisfiability solving, the problem of deciding whether the variables of a propositional formula can be assigned in such a way that the formula evaluates to true, is one of the classic problems in computer science. It is of theoretical interest because it is the canonical NP-complete problem. It is of practical interest because modern SAT-solvers can be used to solve many important and practical problems. In this tutorial paper, we show briefly how such SAT-solvers are implemented, and point to some typical applications of them. Our aim is to provide sufficient information (much of it through the reference list) to kick-start researchers from new fields wishing to apply SAT-solvers to their problems. Supervisory control theory originated within the control community and is a framework for reasoning about a plant to be controlled and a specification that the closed-loop system must fulfil. This paper aims to bridge the gap between the computer science community and the control community by illustrating how SAT-based techniques can be used to solve some supervisory control related problems

    Reasoning about transfinite sequences

    Full text link
    We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on Ļ‰\omega-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on Ļ‰k\omega^k-sequences is EXPSPACE-complete when the integers are represented in binary, and PSPACE-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.Comment: 38 page
    • ā€¦
    corecore