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Abstract. How to reduce, in principle, arms in a verifiable manner
that is trusted by two or more parties is a hard but important prob-
lem. Nations and organisations that wish to engage in such arms control
verification activities need to be able to design procedures and control
mechanisms that capture their trust assumptions and let them compute
pertinent degrees of belief. Crucially, they also will need methods for
reliably assessing their confidence in such computed degrees of belief in
situations with little or no contextual data. We model an arms control
verification scenario with what we call constrained Bayesian Belief Net-
works (cBBN). A ¢cBBN represents a set of Bayesian Belief Networks
by symbolically expressing uncertainty about probabilities and scenario-
specific constraints that are not represented by a BBN. We show that
this abstraction of BBNs can mitigate well against the lack of prior data.
Specifically, we describe how cBBNs have faithful representations within
a Satisfiability Modulo Theory (SMT) solver, and that these representa-
tions open up new ways of automatically assessing the confidence that we
may have in the degrees of belief represented by cBBNs. Furthermore, we
show how to perform symbolic sensitivity analyses of cBBNs, and how
to compute global optima of under-specified probabilities of particular
interest to decision making. SMT solving also enables us to assess the
relative confidence we have in two cBBNs of the same scenario, where
these models may share some information but express some aspects of
the scenario at different levels of abstraction.

1 Introduction

AWE’s Arms Control Verification Research programme supports and advises
UK Government, through the UK Ministry of Defence (MOD), on verification
measures that might be put into operation in the context of future arms con-
trol agreements. Specifically, the UK may one day be involved in a bilateral
or multilateral agreement regarding the monitoring or reduction of arms. Any
such agreement would very likely contain provisions for verifying that parties
to this agreement are indeed compliant with their obligations expressed within
said agreement. These provisions may be in the form of inspections, deployment



of monitoring equipment, use of satellite imagery, agreement of formal notice
periods for certain activities and so forth.

An understanding of the reliability of such provisions and their interaction
will be paramount: an agreement is more likely to be signed, and honoured,
if all parties can be confident that the agreement’s provisions allow them to
verify compliance of other parties with the agreement. These provisions will be
informed by strategic and conflicting interests of the parties. We propose to fur-
ther such understanding by using mathematical analysis in this problem space,
based on mathematical representations of arms control verification scenarios. In
such scenarios, we are primarily interested in three types of quantities:

— Trust: a bias in the processing of imperfect information about another party

— Degree of Belief: the amount we believe a proposition is true

— Confidence: a measure of the uncertainty we should have in our degree of
belief in a proposition.

Assuming that verification measures have been deployed, a mathematical repre-
sentation of an arms control verification scenario should then allow a party to
have high confidence in its degrees of belief (even if these degrees of belief are
low), regardless of what trust it places in other parties. Such trust may, e.g., be
based on past dealings between the parties or may be affected by the conduct
exhibited within the verification activities themselves.

Mathematical representations should therefore give us measures of Trust,
Degree of Belief, and Confidence so that we can investigate the trade-offs
between these measures, assess their relative merits, or perform optimisation —
e.g. to determine extremal cases of interest. Other desired capabilities of such
mathematical representations are:

(1) ability of non-technical users (e.g. diplomats) to understand these represen-
tations and their results

(2) ability to represent both subjective (e.g. expert opinion) and objective data

(3) ability to determine which representational aspects or results are due to
different subjective modelling decisions

(4) ability to represent and analyse dynamic, time-dependent scenarios

(5) ability to perform optimisation for measures of interest and their trade-offs

(6) ability to certify or formally prove that analysis outputs are correct.

In this paper, we explore the suitability of one such mathematical representation,
Bayesian Belief Networks (BBNs) — see e.g. [10] — against the aforementioned
desired capabilities in understanding the measures of Confidence, Degrees of
Belief, and Trust.

We assume that little or no prior data is available for modelling arms con-
trol verification scenarios. This prevents us from using methods for estimating
probabilities within BBNs. Moreover, control mechanisms may be subject to non-
probabilistic, logical rules so we want to enrich BBNs with logical constraints.
Thus we propose to use symbolic representations of both the uncertainty of prob-
abilities within a BBN and of logical constraints of such a symbolic BBN. These



constrained BBNs (¢cBBN) generalise BBNs in that the latter have no such un-
certainty and no logical constraints. cBBNs also generalize Credal networks (see
e.g. [9]), where the latter abstract probabilities of BBNs with convex intervals — a
particular form of uncertainty — but cannot capture logical constraints.

To get the ability to assess confidence in degrees of belief of cBBNs, we
develop techniques for determining whether one or more cBBNs are satisfiable at
the same time, where satisfiability witnesses are BBNs that meet all constraints
expressed in the cBBNs. We also show how to compute optimal such witnesses
for measures of interest such as the probability of a ¢cBBN node that informs
decision making or such as the worst-case sensitivity of a node in a cBBN.
Technically, we achieve this by specifying cBBNs in the Satisfiability Modulo
Theories (SMT) solver Z3 [20], and by formulating confidence queries directly
in SMT.

The contributions of this paper are therefore in proposing a new approach
and methods for representing and analysing Bayesian Belief Networks, with a
concrete application in national security in mind. We also demonstrate that our
new methods genuinely enrich the modelling capabilities that exist to date in this
application domain, notably (2), (3), and (5) above. We also began a case study
[3] demonstrating that our approach can accommodate the temporal capability
in (4) but we cannot report on this within the scope of this paper.

We note that our approach, an SMT-based analysis of constrained BBNs,
can not only express logical rules of arms control verification, it can also use
such logical rules to ensure a consistent relationship between different levels
of abstraction in the comparison of two or more cBBNs that model the same
arms verification control scenario. Our SMT-based approach is also consistent
with realising the capabilities listed in (1) and (6) above, and scoping out the
potential for this is subject to future work. The reader is hoped to appreciate
that this paper emphasises the exposition of our new methods and their utility
for this case study, at the expense of providing less detail on the more routine
tool building activities that support and animate these methods.

We emphasise that our methods are of general interest to those who model
any security aspects with BBNs but have little contextual data that informs
their models or to those that may need to constrain these BBNs logically.

Outline of paper: In Section 2 we present our arms control verification scenario
and model it with a simple Bayesian Belief Network. The scenario is designed to
be comprehensible to a non-expert of the application domain. Section 3 contains
a gentle introduction to Satisfiability Modulo Theory solving and explains how
constrained Bayesian Belief Networks can be represented as input for an SMT
solver. Our methods for assessing the confidence in constrained Bayesian Belief
Networks are developed in Section 4. The context of our work and related work
are discussed in Section 5 and the paper concludes and discusses future work in
Section 6.



2 An arms control verification scenario

Consider two fictitious nation states (referred to as “nations” below to avoid
confusion with “states” of a BBN), N1 and N2, the latter of which is tasked with
identifying whether boxes A and B belonging to the former and installed in a
controlled inspection facility contain nuclear weapons. Nation N2 is also given
declarations from nation N1 as to what is supposed to be in these boxes. The
purpose of this inspection within an arms control agreement may be that the
contents of the boxes are on their way for decommissioning, destroying, storage,
civilian reuse, etc. Our mathematical model of the scenario does not reflect what
may happen to the material post-inspection, but more detailed models may well
reflect this. It should be noted that the models of this case study are created by
nation N2 in order to assess this scenario.

Nation N1 declares that one box does indeed include nuclear weapons, and
that the other does not. To illustrate that we can also add some gamification
(unrealistic in a real scenario), let us assume that nation N1 won’t reveal in which
box the nuclear weapon might be, and that the inspecting party is allowed to
inspect only one of these two boxes. The inspecting party, say nation N2 or some
third party, is given a radiation detector with a specific, known sensitivity and
known false-error reporting rate. The detector shows a green or red light based
on whether nuclear materials in a particular ratio of a particular isotope are
present or not. No other information bar this colour outcome is provided, which
establishes an information barrier that can hide, e.g., important weapon design
secrets of nation N1 — a requirement for agreeing to such inspections [18].

The design of the detector has been agreed upon by both nations N1 and N2.
Nation N2 believes that it may be possible for nation N1 to spoof a radioactive
signal (or indeed block a radioactive signal through under-saturation or over-
saturation of gamma signals), to fool the detector, or indeed, to have just placed
radioactive material in the boxes, but no weapon (in which case, nation N2 even
needs to consider its degree of belief of nation N1 being able to build a nuclear
weapon). There is also a possibility that the nuclear material may have been
enriched to a physical state that is outside the detectable ratio range of the
detector, but nation N2 thinks this is unlikely.

There are of course multiple ways of modelling this scenario. One advantage of
our approach developed below is that it is able to compare different such models
analytically and automatically. In this case study, we consider a simple and a
more detailed model — both of which have some nodes in common (demonstrating
that we can accommodate such overlap). The simple BBN model is depicted in
Figure 1. In a BBN, nodes represent (probabilistic) events. Such events may be
conditional on other events (their parent nodes in a dependency graph). In our
simple model, we have the following set of nodes:

— Box: which box will be inspected, that choice will determine whether nation
N2 expects nuclear weapons to be present or not
— Spoof: determining nation N2’s belief in a spoofed signal
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Fig. 1. Simple Bayesian Belief Network modelling our nuclear arms verification scenario

— Detectable Ratio: probability that the fissile material of the object in the box
has an isotopic ratio that the system is designed to give a green light for

— Detector Light: accounts for false positive and false negative rates of the
detector itself, and determines the green/red light state on the detector

— Conversation Belief: models whether or not external discussions with nation
N1 would lead nation N2 to believe declarations of nation N1

— Ability to Build: captures nation N2’s uncertainty over the technical abilities
of nation N1, irrespective of the detector result

— Believe Weapons Present: the overall belief of nation N2 in a nuclear weapon
being present in the inspected box.

The BBN B in Figure 1 shows the dependency graph of the simple model. For
example, the belief in the presence of nuclear weapons depends (through incom-
ing edges) on the events Detector Light, Ability to Build, and Conversation Belief.
Each node in the BBN B has a probability table from which one can compute its
probability. For node Box we see that the inspection of a box is determined by
flipping a fair coin. For node Believe Weapons Present, this probability table lists
the probability distributions conditionally on the three aforementioned parent
events. The probabilities used in this scenario are fictitious but convey plausible
perceived levels of trust and degrees of belief.

Figure 2 shows how to compute probabilities for all nodes via the Law of Total
Probability, by “summing out” conditional probabilities so that probabilities at
a node are expressed in terms of probabilities of its parent nodes only.
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Fig. 2. Two ways of computing node marginal P(BWP = T) for Believe Weapons
Present (BWP): via summing (first line) over all possible combinations of the condi-
tional probability, multiplied by the parent marginals Ability to Build (AB), Conversation
Belief (CB), Detector Light (DL); or via the joint probability distributions (second line)

3 Expressing constrained BBNs in an SMT solver

Satisfiability modulo theories [20, 1] is an approach to automated deduction sup-
ported with robust and powerful tools that combine the state-of-the-art of de-
ductive theorem proving with that of SAT solving for propositional logic. We
choose Z3 as SMT solver within our tool, although it would be relatively easy
to replace it with another solver such as CVC3 [2].

The SMT solver Z3 has a declarative input language for defining constants,
functions, and assertions about them [20]. Figure 3 shows Z3 input code to
illustrate that language and its key analysis directives. On the left, constants of
73 type Bool and Real are declared. Then an assertion defines that the Boolean
constant q means that z is greater than y+ 1, and the next assertion insists that
q be true. The directives check-sat and get-model instruct Z3 to find a witness
of the satisfiability of the conjunction of all visible assertions, and to report such
a witness (called a model, but we will refer to Z3 models as “witnesses” to avoid
any ambiguous use of the word “model” in the paper). On the right of Figure 3,
we see what Z3 reports for the input on the left: sat states that there is a witness;
other possible replies are unsat (there cannot be a witness), and unknown (Z3
does not know whether or not a witness exists).

(declare-const q Bool) sat

(declare-const x Real) (model

(declare-const y Real) (define-fun q () Bool true )
(assert (=q (> x (+y 1)))) (define-fun y () Real (-2.0) )
(assert q) (define-fun x () Real 0.0)
(check-sat) )

(get-model)

Fig. 3. Left: sample Z3 input code with a directive to find and to generate a witness.
Right: raw Z3 output for the left input code (edited to save space), saying that the
conjunction of all assertions is satisfiable, and supporting this claim with a witness.

We encode a BBN in SMT using an automated code generator we have
written; it converts a specification of a BBN given in a form similar to that seen



in Figure 1 automatically into SMT code. All state variables of a BBN node are
declared in SMT by an appropriate enumeration type. In our simple BBN B,
these are mostly Boolean variables or tuples of such Boolean variables. But in
general, such variables may take on other values such as integers.

The probability of a node is expressed in SMT as an arithmetic constraint
that captures the definition of that probability as a function of the probability
of its parent nodes and its own probability table. Although this is merely restat-
ing the familiar definitions for BBNs (see e.g. [10] and Figure 2), we carefully
circumscribe any use of divisions (occurring through the use of Bayes’ Theorem)
as equivalent equations of multiplicative terms. This syntactic change avoids
the use of division, whose presence complicates automated reasoning and often
makes an SMT solver report analysis result unknown.

We add constraints that ensure that all probabilities for all nodes add up to
1. Doing this will likely detect any accidental transcription errors in the specifica-
tions of probability tables and, more importantly, will ensure that the semantics
of a ¢cBBN (where some or all probabilities are under-specified) is still that of
a set of concrete BBN that “refine” it by resolving such under-specifications to
concrete probability distributions — in the spirit of abstract interpretation [8].

Having this SMT encoding in place, it is now easy to extend it to a cBBN. For
example, suppose that we want to relax the probability for when the detector
reports a green light in the BBN of Figure 1 in the state in which box A is
inspected, nation N2 believes that the signal is being spoofed, and nation N2
believes that a detectable ratio of radioactive material is being used. In that
state, we want to change the probability distribution from 0.4 and 0.6 to «
and 1 — a, respectively, where « is constrained to be in a convex interval, say
the interval [0.3,0.4]. The choice of such intervals may be informed by external
sources such as expert opinions, and the interval may have further non-convex
restrictions via logical constraints of the cBBN.

We can represent this in our SMT encoding by declaring a real variable «,
and using it and its complement 1 — « in place of 0.4 and 0.6 in the assertions of
our SMT encoding that contain references to these probabilities (e.g. definitions
of overall probabilities at nodes). Additionally, we add the assertion that a be
in [0.3,0.4] by adding (assert (and (<= 0.3 a) (<= « 0.4))) to the SMT code
for this model. In this manner, we can generalise the BBN B in Figure 1 to a
¢BBN, referred to as C subsequently, in SMT. We note that we can relax more
than one such probability in a similar manner and Z3 seems to cope well with
multiple such relaxations.

Let us now turn to discussing how we can ask questions about ¢cBBNs in
SMT. The simplest possible question is to ask whether the SMT encoding of a
c¢BBN is satisfiable, and failure of satisfiability would point out crude encoding
or modelling errors. But we may use the power of an SMT solver to ask more
interesting questions. For example, we may ask whether the probability of a
node in a ¢cBBN is always below a certain threshold (a form of vacuity checking
[15]). Our tool allows us to declare such an analysis and to generate Z3 input
code that, when run, will try to answer this whilst reflecting all probabilistic



constraints represented in the network (its BBN aspect) and all arithmetic or
logical constraints (the relaxations of concrete probabilities and logical rules that
make a BBN into a ¢cBBN). In the next section, we discuss richer questions that
would not be solvable with BBN tools, and how we use SMT to answer them.

So far we have only discussed encodings of cBBNs that reflect no means of
updating evidence. BBNs can model hard evidence, which changes the proba-
bilities in a BBN upon observation of an event as seen for example in Figure 4.
These changes propagate through the BBN and algorithms exist that compute
this propagation of belief update (see e.g. [10]); our tool uses the Junction Tree
Algorithm [17] to that end.

_ P(SO=T|Box=A) P(Box=A)

P(Box =480 =T) = >, P(SO = T | Box = i) - P(Box = i)

Fig. 4. Updated marginal for node Box (Box) via Bayes’ Rule once Spoof On (SO) is
observed as true

Our tool can accommodate the processing of hard evidence in cBBNs as fol-
lows. Since probabilistic uncertainty is expressed via symbolic parameters, we use
a Python script of the Junction Tree algorithm supplied within an open-source
BBN package from eBay at github.com/eBay/bayesian—belief —networks to
compute the updated probabilities symbolically. Then we remove the assertions
in the SMT code that express the marginal probabilities and replace them (where
applicable) with the symbolic assertions computed by this algorithm to reflect
the marginals after their update based on this hard evidence. Note that this
process is independent of any logical, non-probabilistic constraints of the cBBN
and won’t modify the SMT code of such constraints.

This update mechanism is external to the SMT solver and needs to post-
process the SMT code of the cBBN before the modified SMT code can be further
analysed, but now with the hard evidence properly reflected. Furthermore, it
is important to realise that the propagation of hard evidence is different from
analysing “soft” evidence. In our model we also pull out events of interest by just
adding a constraint to our SMT code saying that a state variable at a node has
a particular value — without propagating this as one would do for hard evidence.

4 Assessing Confidence in cBBNs

Our SMT encodings of constrained BBNs allow new forms of analysis, one of
them being a comparison of different such models. To demonstrate this, we
present the dependency graph of a more detailed model B’ in Figure 5.

The BBN B’ shares some nodes with the BBN B, and has the same probability
tables for these nodes. But B’ refines some nodes of B to take a more nuanced
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in the appendix)

Deliberately
saturates -

view of the ability to spoof and the assessment of whether a detectable ratio of
nuclear material is present. The new nodes are:

— Intention to Mislead: the belief of nation N2 about nation N1’s said intent
— Deliberately Saturates: probability of nation N1 to saturate the information
barrier, dependent on nation N1’s intention to mislead

Manufactured Gamma: probability of manufactured gamma being used, also
dependent on nation N1’s intention to mislead

Ratio of Plutonium: models said ratio, depends on events Box, Manufactured
Gamma, and Deliberately Saturates, and informs event Detector Light.

We write C’ for the constrained BBN that relaxes B’ with the same uncertainty
a as C relaxes B, and pose the following questions:

Q1 For the constrained BBN C, what is the maximal/minimal probability of na-
tion N2 believing that a weapon is present given that nation N2 is uncertain
about the prior probability of the detector light turning green?

Q2 How different can the probabilities of nation N2 believing that a weapon is
present be between ¢cBBNs C and C’, i.e. when nation N2 is uncertain about
the prior probability of the detector light going green?

Q3 Can the constrained BBNs C and C’ return different results when we ask
whether the probability of nation N2 believing that a weapon is present can
be above a threshold, which we are uncertain about?

Q4 For what threshold ranges can such different results for Q3 occur?

Almost all of these questions require us to compute optimal values of a poten-
tially non-linear objective function. We realise this in our tool by implementing
unbounded binary search through the Python API for the SMT solver Z3. The
pseudo code for this computation is depicted in Figure 12 in the appendix for



the case of global maxima. This method computes optimal values within a de-
sired accuracy d > 0, and also truncates the mantissa of witness real numbers
to a size commensurate to the value of §. We do this as larger mantissas tend to
increase the complexity of reasoning in the SMT solver within the unbounded
binary search.

4.1 Optimising a probability over uncertainty

Let us reconsider the cBBN C obtained from the BBN B so that the probability
distribution for Detector Light is @ and 1 — a and where « is constrained to be
in the interval [0.3,0.4]. We then maximise the variable of the SMT encoding of
C that represents the overall probability of event Believe Weapons Present.

COP_Believeweaponspresent represents the largest joint probability con-
tributing to the marginal and C_4_S1 is the marginal probability for event Be-
lieve Weapons Present. The witness returned by the SMT solver for this query is
shown in Figure 6.

[Believeweaponspresent = 1,
COP_Believeweaponspresent = 72836577/320000000,
C_4_S1 = 100021751/160000000,

x = 2/5,

Abilitytobuild = 1, Conversationbelief = 1, ...]

Fig. 6. Excerpt of the witness of the SMT solver (hand-edited to save space) for our
SMT-based encoding of cBBN C, where variable x denotes the value of « from [0.3,0.4]
for which event Believe Weapons Present has maximal probability C_.4_S1 given that our
event of interest is Believeweaponpresent = T

The real values of a witness are rational numbers since SMT solvers use exact
arithmetic — another aspect that helps to establish Confidence in computed
degrees of belief. The maximal value of C.4_S1 is 100021751/160000000 which
equals 0.6251, and this maximal value is attained when the o (modelled as x in
the SMT code) has value 2/5 = 0.4. Witness values relevant to this optimisation
query are those of x and C_4_S1; but the witness reported in Figure 6 also offers
some states of the event for which the maximal joint probability (with the node’s
parents), COP_Believeweaponspresent, is attained.

We find that the global minimum of C_4_S1 is 0.6233, occurring when x is 0.3.

4.2 Optimisation for hard evidence

We can also optimise probabilities in ¢cBBNs for hard evidence. The Junction
Tree Algorithm (JTA) implemented in the aforementioned open-source code of
eBay can also be executed for symbolic input such as for the variable x in the
SMT representation of C. We then take this symbolic output of the JTA and



post-process it so that divisions are expressed in terms of multiplications (where
possible). Figure 7 illustrates what kind of assertions this adds to the SMT model
of C, where x is the variable that captures the uncertainty in C.

s.add((C_4_S1%0.15) == (0.0158175%x+0.09513975))
s.add((C_4_82%(0.095%x+0.88845)) == (0.02014*x+0.1883514))

Fig. 7. Some marginal probabilities revised by hard evidence via the symbolic Junction
Tree Algorithm, post-processed to replace divisions with equivalent multiplications

Then we update the relevant portions of the SMT representation with this
symbolic input to reflect the hard evidence. Thereafter, we can compute maxima
in the same manner as described above.

To illustrate, let us now think of Believeweaponspresent = T as our param-
eter of interest and let us consider Spoof = T as hard evidence. Then we trans-
form C and its SMT representation as just outlined, and compute the maximum
for C_4_S1 over this transformed SMT code, and find that this is 135289,/200000
which equals 0.6764. We can similarly compute the minimum of C_4_S1 and find
that this equals 6659/10000 = 0.6659.

Note that if nation N2 definitely observes the crude node Spoof On, its confi-
dence increases that a weapon is present. We can see this here since the maximal
probability increases from 0.6251, when x is 0.4, to 0.6764, when x is also 0.4,
but Spoof = T. If nation N2 knew that always Box = A (instead of also allowing
for Box = B in our gamified scenario), then observing spoofing would lead to a
drop in confidence as it would hint that there is no weapon. The results above
though are in keeping with the probabilities assigned in the node tables for the
gamified scenario which crudely models that a spoofed signal can be used to
both hide and mimic a weapon.

4.3 Confidence in comparison of cBBNs

Consider two cBBNs that have a common node whose probability will support
decision making. We want to compute the maximal difference that these respec-
tive probabilities could have, in order to assess with confidence by how much
they could differ in principle. We illustrate how this can be done in SMT by
considering again the CBBN C for the simple model, and the BBN B’ for the
detailed model (noting that BNNs are also cBBNs). The event of interest in both
models is Believe Weapons Present. We want to compute the maximal difference
of the joint probability of this event (with its parent nodes) in both models,
expressed in our SMT model as

(declare-const DIFF Real)
(assert (= DIFF (abs
(- COP_Believeweaponspresent_modl COP_Believeweaponspresent_mod2))))



where the suffixes mod1 and mod2 separate the name spaces for these two cBBNs
within the same SMT model. Since these cBBNs contain also common aspects,
we use the logical constraints of the SMT language to specify the “semantic glue”
between these common aspects. Doing so prevents the computation of values for
DIFF that would arise from inconsistent instances of these two cBBNs. Figure 8
illustrates how this is done for the two models considered here. In many cases,
we just state that variables have the same meaning.

(assert (= Box_modl Box_mod2))

(assert (= DetectorLight_modl DetectorLight_mod2))

(assert (= Believeweaponspresent_modl Believeweaponspresent_mod2))

(assert (ite (= SpoofOn_modl 2) (= RatioOfPu_mod2 3) (not (= RatioOfPu_mod2
3))))

Fig. 8. Excerpts of SMT code that semantically connects common aspects of C and B’:
e.g. its if —then—else assertion logically relates Spoof On of C to Ratio of Pu of B’

In other cases, we need to provide glue between different levels of abstraction.
For example, that state SpoofOn = F and only that state of the simple model is
mapped to a certain level of ratio of element Pu in the detailed model. Specif-
ically, in the scenario only a ratio of About 10:1 is deemed acceptable (see the
last table in Figure 11 of the appendix for how ratio levels are modelled in B’);
all other levels would indicate a spoof. The figure shows such an assertion with
ite (if-then-else) where integers encode states of these variables, e.g., 3 encodes
ratio About10 : 1.

Now we can compute the maximum of DIFF, which equals 0.0921. The witness
for this tells us that the simple model has probability 0.0843 and the detailed
one probability 0.176 which realise this difference. In fact, we could in principle
extract two BBNs from that witness to study how these probabilities come about.

4.4 Two-dimensional difference analysis

We may also compute such maximal differences for a probability of interest as a
function of how uncertainty in two models gets resolved. Let = be the probability
for Conversation Belief being true in the simple model, whereas y denotes the
corresponding probability in the detailed model. We can now maximise DIFF
above again, but for each data point (z,y) in [0,1] x [0, 1] at some granularity.
The result of this analysis is seen in Figure 9.

If both models have the same priors, meaning when x = y, we would expect
both models to agree most. And we do see a trough of DIFF at the x = y axis
even though it is somewhat shifted and distorted by the different ways in which
these models represent event Detector Light, for example.
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Fig. 9. 3-D plot showing the maximum of variable DIFF where z and y axes represent
the probability of ConversationBelief = T in the simple, respectively, detailed model

4.5 Computing agreement intervals

We are interested in the probability of event Believe Weapons Present in both
¢BBNs C and B’. Let us write pr and pr’ for this probability in these models,
respectively. Consider a threshold th such that truth of th < pr, respectively,
th < pr’, would support a decision, e.g., for nation N2 to declare that the inspec-
tion has been successful. We want to understand for which values th these two
c¢BBNs would agree on that decision. Using their common SMT representation
discussed above, we can ask whether

((th < pr) A (pr' <th))V ((th < pr') A (pr < th))

is satisfiable in that SMT model. If not, then the two models would support
the same decision for threshold value th. Using our global maximum method,
where th is now the variable to optimise, we can compute ranges of th for which
both models agree in their support of the decision of successful inspections. One
such interval of agreement that we can compute for these models is [0.307,1.0],
implying that thresholds at or above 0.307 render the same decisions.

4.6 Sensitivity analyses
We refer to [16] for a discussion of pertinent sensitivity analysis of Bayesian

Belief Networks called Bound, Score, and Vertex Prozimity (respectively), and
their use in an application of digital forensics.



We conducted such sensitivity analyses for our models as well (not shown
here). Such methods don’t rely on SMT and complement the approach advocated
in this paper. But we claim that there is benefit in leveraging our SMT-based
approach to compute symbolic sensitivity results. Figure 10 shows such results
for sensitivity analysis Score [16], for the cBBN C. These symbolic assertions can
then be further analysed within an SMT model, e.g., to compute maximal values
of these expressions to learn worst-case sensitivities.

Name Sensitivity Score
Box -148.0%(0.0004275*x - 0.00336683986467894)*(0.0158175%x + 0.633562925005377)
Spoof On -44.4444444444444%(0.0158175%x - 0.0548602500019255)*(0.0158175%x
0.633562925005377)

Detectable ratio | -1.90249702734839%(0.0158175%x - 0.238873075001069)*(0.0158175%x + 0.633562925005377)

Detector Light 1.0%(0.01007*x + 0.113679700000125)*(0.0158175%x + 0.633562925005377)/(0.0475%x +

0.536225)**2

Conversation belief | -1.0%(0.01189875%x - 0.255675637493819)*(0.0158175*x +

0.633562925005377) /(1.7347234759768 1e-18%x + 0.75)**2

Ability to build | -2.77777777777778%(0.01083*x - 0.132740700000797)*(0.0158175*x + 0.633562925005377)
Average (-0.702999999999999*x + 2.43823333341891)*(0.0158175%x + 0.633562925005377),/6 +

(-0.06327*x + 0.498292299972483)*(0.0158175%x -+ 0.633562925005377)/6 +

(-0.0300927467300832*x + 0.454455315103103)*(0.0158175*x + 0.633562925005377)/6 +

(-0.0300833333333334*x + 0.368724166668881)*(0.0158175%x + 0.633562925005377)/6 +

(-0.01189875*x + 0.255675637493819)*(0.0158175%x +

0.633562925005377) /(6*(1.73472347597681e-18%x + 0.75)**2) + (0.01007*x +

0.113679700000125)*(0.0158175%x + 0.633562925005377) /(6*(0.0475%x + 0.536225)%*2)

Fig. 10. Sensitivity of cBBN C with respect to event Believe Weapons Present, as a
function of the sole parameter = that is under-specified in C. The last row computes
symbolic averages of all node sensitivities

5 Wider context of work and related work

We first put the research reported in this paper into a wider context of the
problem space. Article VI of the Treaty on the Non-Proliferation of Nuclear
Weapons (NPT) states that each of the parties to the Treaty

“

. undertakes to pursue negotiations in good faith on effective mea-
sures relating to cessation of the nuclear arms race at an early date
and to nuclear disarmament, and on a treaty on general and complete
disarmament under strict and effective international control.”

The UK and Norway have explored, since 2007, how effective verification
procedures could be established that could play a vital part in meeting the obli-
gations set out in Article VI [18, 14]. This collaboration made clear that security
and safety requirements are essential for the creation of verification technologies
and processes, and that more effort is needed at devising such technologies and
processes such that all parties can gain and maintain confidence in them. In the



past 15 years, the US and UK engaged in a technical cooperation that explored
and evaluated methodologies and technologies for the verification of arms control
treaties [24]. This work showed that it is feasible to monitor and verify nuclear
warheads, components and processes; but it also identified the need for further
research. Our work reported here can be seen as making a contribution to meth-
ods that would allow parties to build and sustain confidence in particular arms
control verification mechanisms.

We now discuss related work outside this problem space. Robust optimisation
is an approach to optimisation in which one seeks a measure of robustness against
deterministic uncertainty in parameters of the optimisation problem [4]. Robust
optimisation has already been applied in computer security, e.g. to model human
adversaries in complex security resource allocation problems [21]. Mixed Integer
Linear Programming (MILP) and its non-linear variant MINLP can express
constraints stated in propositional logic, but — unlike SMT — seem unable to
express relational or functional structure within atomic propositions. Robust
optimisation has been applied to MINLP problems of scheduling under bounded
uncertainty [13]. This is related to our work in [3] where we use SMT to robustly
compute optimal schedules for nuclear arms inspection regimes over measures of
interest to participating parties.

Z3opt is an SMT solver based on Z3 that incorporates optimisation within
the SMT solver itself, including the ability to compute Pareto fronts [19]. Our
work in [3] scales better if we use Z3opt instead of Z3 plus our own optimisation
seen in Figure 12 in the appendix. However, we were not able to use Z3opt
successfully for the work reported in this paper, which may be due to the fact
that we here work with non-linear objective functions.

Next, we discuss additional work on sensitivity analysis of BBNs. One such
analysis studies the sensitivity of queries in BBNs to changes of a sole param-
eter, including an understanding of which changes would realise a given query
constraint [7]. It seems possible to extend such work to multiple parameters at
moderate computational overheads [6]. In [23] it is noted that naive Bayesian
classifiers perform quite well even in the presence of inaccuracies, and that stan-
dard sensitivity functions suffice to describe scenario sensitivities [23].

In [11], methods from constructive real analysis are used to decide whether
a formula is satisfiable if the values occurring in it can be perturbed by at most
a specified, uniform value § > 0. This approach can support a good range of
non-linear functions, including some transcendental ones, and can be applied
to solutions of Lipschitz-continuous ordinary differential equations. This should
therefore also enable a form of robust optimisation.

Our introduction is similar to the motivation given in [22], which poses a
problem to the European Study Group with Industry (ESGI 107), held in Manch-
ester in March 2015 [22]. Although our introduction shares this exposition of the
problem, our paper advocates the use of BBNs, and ¢cBBNs as their suitable
abstractions, as one method of probing scenarios in application domain.

We view our approach as complementing other approaches in that problem
domain — be they based on game theory, economic considerations of trust cul-



tures, policy and reputation based formalisms, dynamical systems and so forth.
For example, we considered predicates asking whether the probability of a cBBN
node can be above some threshold; and such predicates may inform rules within
policy-based languages that evaluate trust — of which the language Peal and its
tool PEALT is a more recent example [12].

6 Conclusions

We have proposed the use of BBNs in the modelling and assessment of nuclear
arms verification scenarios, because such networks have several desirable fea-
tures, e.g., their ability to represent both subjective and objective data that can
interact in the model. BBNs formulated for this problem domain contain Trust,
e.g., in the form of biases expressed as probabilities; and they capture Degrees
of Belief by computing probabilities of events. However, in this problem domain
it is paramount to assess the Confidence that we have in such degrees of belief.
Yet in this problem space Confidence is hard to come by, given that little or
no prior data are available to inform probabilities within model BBNs.

In this paper, we addressed this modelling problem by abstracting BBNs to
constrained BBNs, which are subject to logical constraints and whose probabil-
ities may contain symbolic uncertainties. We then addressed the corresponding
analysis problem by representing these cBBNs in Satisfiability Modulo Theories,
so that SMT solvers can answer queries about one or more of such cBBNs.

We demonstrated these new capabilities by developing constrained BBNs
that model a particular arms control verification scenario, and by then analysing
scenario-specific queries over those constrained BBNs but expressed in SMT.
The types of queries that we analysed included the optimisation of the overall
probability of an event in a constrained BBN, optimisation for hard evidence
and its resulting model update, optimisation to determine worst-case differences
between two cBBNs that model the same scenario, the computation of threshold
ranges for which two constrained BBNs would inform decisions in the same
manner, and worst-case sensitivities of critical nodes in a constrained BBN.

Our approach has several advantages: the query language is open-ended,
queries merely have to be expressible in SMT; satisfiability witnesses for queries
found by an SMT solver subsume the description of concrete BBNs that can
subsequently be fed into BBN tools for external validation and feedback to non-
expert users; and we may add logical constraints freely, for example to provide
consistency between levels of abstractions of two or more constrained BBNs.

In future work, we want to design a domain-specific language in which we can
specify constrained BBNs as well as a host of analysis methods, including those
represented in this paper. And we want to write code generators that transform
such specifications into SMT code. Finally, it would be of great interest to certify
unsatisfiability results (e.g. that a computed maximum probability really is a
global maximum). In that context, it is worth noting that Z3 can provide proofs
of unsatisfiability, and there has been work on independently certifying such
proofs in interactive theorem provers [5].
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A Ancillary material

In order to make this paper more self-contained, we provide in this appendix
two figures that show probability tables of our more detailed Bayesian Belief
Network and details of our optimisation algorithms, respectively.



Box Ability to Build Conversation Belief
A B Y N T F
0.50.5 0.6 0.4 0.75 0.25
Manufactured Gamma
Saturates/Intention T F Intention to mislead
T T 0.99 0.01 Box T F
T F 0.01 0.99 A 0.2 0.8
F T 0.3 0.7 B 0.1 0.9
F F 0.0 1.0
Deliberately saturates Ratio of Pu Dcftecernght
Box/Intention T F
A T 08 0.2 Significantly less 0.05  0.95
A F 002 0.98 Loss 02 08
Around 10:1  0.01  0.99
B T 0.7 0.3
B P 0.01 0.99 More 0.2 0.8
Significantly more 0.95  0.05
Believe Weapons Present
Ability /Conversation/Detector T F
YT G 0.99 0.01
YT R 0.6 0.4
YF G 0.55 0.45
YF R 0.3 0.7
NT G 0.85 0.15
NT R 0.5 0.5
NF G 0.5 0.5
NF R 0.2 0.8
Saturates|Gamma|Box||Significantly less |Less |Around 10:1 |More |Significantly more
T T G ||04 0.09 [0.02 0.09 |0.4
T T R |04 0.1 1|0.0 0.1 |04
T F G ||0.5 0.4 0.1 0.0 |0.0
T F R [|0.2 0.2 (0.2 0.2 (0.2
F T G ||0.0 0.1 ]0.25 0.25 |04
F T R |/0.0 0.0 [0.1 0.3 0.6
F F G ||0.0 0.15 |0.7 0.15 0.0
F F R ||0.2 0.2 [0.2 0.2 (0.2

Fig. 11. Probability tables for model B’ of the arms verification control scenario. The
last two tables specify node Believe Weapons Present and node Ratio of Pu, respectively



def maxopt (X, delta):

# unbounded search begins
r = s.check()
if r == unsat:
return unsat
else:
t = s.model()

while r == sat:
s.push()
s.add(X > 2*t[X])
r = s.check()
if r == sat:
t = s.model()
s.pop()
# unbounded search ended

# bisection method begins
v = t[X]
v = float(v.as_decimal(10) [:-1])
max = 2%v
min = v
while (max-min) > delta:
s.push()
s.add(((max-min) /2)+min <= X)
r = s.check()
if r == sat:
min = ((max-min)/2)+min
else:
max = ((max-min)/2)+min
s.pop()
y = (max_min)/2
# bisection method ended
return y

Fig. 12. Pseudo-code that returns the global maximum of real variable X within an
accuracy of § > 0, where X is declared in the SMT input and is the subject of this
optimisation. Variable s is an instance of the SMT solver, and expression s.model()
refers to a witness found by that solver on its current input. The use of float above
controls the mantissas of max and min to be commensurate with the desired accuracy ¢
to mitigate the complexity of reasoning. Directives push and pop control the visibility
of assertions for incremental satisfiability checks



