15 research outputs found

    Best strategy to control data on internet-of-robotic-things in heterogeneous networks

    Get PDF
    The control and transmission of huge data constitute an immense challenge in various types of networks (wired and wireless). Congestion caused by the high traffic and low throughput of huge data continues to be major problems in a heterogeneous platforms such as internet of things (IoT) technology and internet-of-robotic-things (IoRT). The heterogeneous network requires new models and mechanisms to deal with the increased challenges posed by IoT and IoRT. Accordingly, eliminating the issues that emerge has compelled finding improved solutions as a new strategy. This study proposed a new strategy called routing information and distance vector (RIDV) to create the best improvement of a heterogeneous network. The RIDV strategy activates the routing information protocol (RIPv2) on a router in wire network parallel with the ad-hoc on-demand distance vector (AODV) protocol on the wireless network. The RIDV strategy is used to solve the problems of the diversity of heterogeneous networks as the basis of the infrastructure IoRT technology. Hence, this strategy can reduce or avoid congestion through the use of enhanced and effective best routing protocols. Simulation results using OPNET show that the proposed method improved the quality of service (QoS) compared with other related strategies and AODV and RIPv1 protocols in terms of data drop, traffic drop, queue delay, and throughput

    AODV (ST_AODV) on MANETs with Path Security and Trust-based Routing

    Get PDF
    The nodes of the MANET are connected by an autonomous that has no predetermined structure (Mobile ad hoc Network). When a node's proximity to other nodes is maintained dynamically via the use of relying nodes, the MANET network's node-to-node connection is un-trusted because of node mobility. If a node relies on self-resources at any point in time, it runs the risk of acting as a selfish or malicious node, the untrusted selfish or malicious node in the network. An end-to-end routing route that is secure has been presented to enhance the security of the path based on the AODV routing protocol using ST AODV (Secure and Trust ADV). To do this, we must first identify the selfish/malicious nodes in the network and analyse their past activity to determine their current trust levels. A node's stage of belief is indicated by the packet messages it sends. In order to resolve each route, trust must be identified and the path's metadata in RREP must be updated

    Simulation based comparison of routing protocols in wireless multihop adhoc networks

    Get PDF
    Routing protocols are responsible for providing reliable communication between the source and destination nodes. The performance of these protocols in the ad hoc network family is influenced by several factors such as mobility model, traffic load, transmission range, and the number of mobile nodes which represents a great issue. Several simulation studies have explored routing protocol with performance parameters, but few relate to various protocols concerning routing and Quality of Service (QoS) metrics. This paper presents a simulation-based comparison of proactive, reactive, and multipath routing protocols in mobile ad hoc networks (MANETs). Specifically, the performance of AODV, DSDV, and AOMDV protocols are evaluated and analyzed in the presence of varying the number of mobile nodes, pause time, and traffic connection numbers. Moreover, Routing and QoS performance metrics such as normalized routing load, routing packet, packet delivery ratio, packet drop, end-to-end delay, and throughput are measured to conduct a performance comparison between three routing protocols. Simulation results indicate that AODV outperforms the DSDV and AOMDV protocols in most of the metrics. AOMDV is better than DSDV in terms of end-to-end delay. DSDV provides lower throughput performance results. Network topology parameters have a slight impact on AODV Performance

    Network performance optimisation using odd and even dual interleaving routing algorithm for oil and gas pipeline networke

    Get PDF
    Wireless Sensor Network (WSN) provide promising and resilient solutions in a broad range of industrial applications, especially in the pipeline of oil and gas midstream pipeline. Such application requires a wide communication coverage area because the pipelines are usually stretched over a long distance. To fit the requirement, the sensor nodes have to be arranged in a linear formation. Performance evaluation has been carried out using reactive (AODV) and proactive (DSDV) routing protocols during the initial phases of the research. The factors causing the overall network performance to degrade as the network density increases are identified. It is mainly due to the load's increment, which will inhabit the packet queue and clog the network. These will result in packet loss, throughput unfairness, higher power consumption, and passive nodes in the network. The AODVEO reactive routing protocol is proposed to reduce the routing instabilities by splitting the traffic into (1) even-path and (2) odd with the consideration of the x-axis. The proposed routing algorithm was then compared to AODV and DSDV routing algorithms in terms of network performance with node deployment of 20,40,60,80,100,120,140,160,180 and 200. The proposed routing algorithm has shown substantial improvements in the delivery ratio (19.07% more), throughput (9 kbps more), fairness index (0.06 more), passive node's presence (30% less), and energy consumption (0.038J less) when compared to AODV on 200 nodes deploymen

    Adaptive epidemic dissemination as a finite-horizon optimal stopping problem

    Get PDF
    Wireless ad hoc networks are characterized by their limited capabilities and their routine deployment in unfavorable environments. This creates the strong requirement to regulate energy expenditure. We present a scheme to regulate energy cost through optimized transmission scheduling in a noisy epidemic dissemination environment. Building on the intrinsically cross-layer nature of the adaptive epidemic dissemination process, we strive to deliver an optimized mechanism, where energy cost is regulated without compromising the network infection. Improvement of data freshness and applicability in routing are also investigated. Extensive simulations are used to support our proposal

    Split, Send, Reassemble: A Formal Specification of a CAN Bus Protocol Stack

    Get PDF
    We present a formal model for a fragmentation and a reassembly protocol running on top of the standardised CAN bus, which is widely used in automotive and aerospace applications. Although the CAN bus comes with an in-built mechanism for prioritisation, we argue that this is not sufficient and provide another protocol to overcome this shortcoming.Comment: In Proceedings MARS 2017, arXiv:1703.0581
    corecore